Podivná distribučně chaotická trojúhelníková zobrazení
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F05%3A%230000039" target="_blank" >RIV/47813059:19610/05:#0000039 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strange distributionally chaotic triangular maps
Popis výsledku v původním jazyce
The notion of distributional chaos was introduced by Schweizer, Smítal [Trans. Amer. Math. Soc. 344;1994:737?854] for continuous maps of the interval. For continuous maps of a compact metric space three mutually nonequivalent versions of distributional chaos, $DC1?DC3$, can be considered. In this paper we study distributional chaos in the class $mathcal{T}_{m}$ of triangular maps of the square which are monotone on the fibres; such maps must have zero topological entropy. The main results: (i) There isan $Finmathcal{T}_{m}$ such that $FnotinDC2$ and $Fmid Rec(F) in DC3$. (ii) If no omega-limit set of an $Finmathcal{T}_{m}$ contains two minimal subsets then $FnotinDC1$.
Název v anglickém jazyce
Strange distributionally chaotic triangular maps
Popis výsledku anglicky
The notion of distributional chaos was introduced by Schweizer, Smítal [Trans. Amer. Math. Soc. 344;1994:737?854] for continuous maps of the interval. For continuous maps of a compact metric space three mutually nonequivalent versions of distributional chaos, $DC1?DC3$, can be considered. In this paper we study distributional chaos in the class $mathcal{T}_{m}$ of triangular maps of the square which are monotone on the fibres; such maps must have zero topological entropy. The main results: (i) There isan $Finmathcal{T}_{m}$ such that $FnotinDC2$ and $Fmid Rec(F) in DC3$. (ii) If no omega-limit set of an $Finmathcal{T}_{m}$ contains two minimal subsets then $FnotinDC1$.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F03%2F1153" target="_blank" >GA201/03/1153: Dynamické systémy II.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos, Solitons and Fractals
ISSN
0960-0779
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
581-589
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—