Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The space of omega-limit sets of piecewise continuous maps of the interval

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F10%3A%230000267" target="_blank" >RIV/47813059:19610/10:#0000267 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The space of omega-limit sets of piecewise continuous maps of the interval

  • Popis výsledku v původním jazyce

    According to a well-known result, the collection of all omega-limit sets of a continuous map of the interval equipped with the Hausdorff metric is a compact metric space. In this paper, a similar result is proved for piecewise continuous maps with finitely many points of discontinuity, if the points of discontinuity are not periodic for any variant of the map. A variant of f is a map g coinciding with f at any point of continuity and being continuous from one side at any point of discontinuity. It is also shown that omega-limit sets of these maps are locally saturating, another property known for continuous maps. However, contrary to the situation for continuous maps, there are piecewise continuous maps having locally saturating sets which are not omega-limit sets. A condition implying that a locally saturating set is an omega-limit set is presented

  • Název v anglickém jazyce

    The space of omega-limit sets of piecewise continuous maps of the interval

  • Popis výsledku anglicky

    According to a well-known result, the collection of all omega-limit sets of a continuous map of the interval equipped with the Hausdorff metric is a compact metric space. In this paper, a similar result is proved for piecewise continuous maps with finitely many points of discontinuity, if the points of discontinuity are not periodic for any variant of the map. A variant of f is a map g coinciding with f at any point of continuity and being continuous from one side at any point of discontinuity. It is also shown that omega-limit sets of these maps are locally saturating, another property known for continuous maps. However, contrary to the situation for continuous maps, there are piecewise continuous maps having locally saturating sets which are not omega-limit sets. A condition implying that a locally saturating set is an omega-limit set is presented

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Difference Equations and Applications

  • ISSN

    1023-6198

  • e-ISSN

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    2-3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

    000275127200012

  • EID výsledku v databázi Scopus