The space of omega-limit sets of piecewise continuous maps of the interval
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F10%3A%230000267" target="_blank" >RIV/47813059:19610/10:#0000267 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The space of omega-limit sets of piecewise continuous maps of the interval
Popis výsledku v původním jazyce
According to a well-known result, the collection of all omega-limit sets of a continuous map of the interval equipped with the Hausdorff metric is a compact metric space. In this paper, a similar result is proved for piecewise continuous maps with finitely many points of discontinuity, if the points of discontinuity are not periodic for any variant of the map. A variant of f is a map g coinciding with f at any point of continuity and being continuous from one side at any point of discontinuity. It is also shown that omega-limit sets of these maps are locally saturating, another property known for continuous maps. However, contrary to the situation for continuous maps, there are piecewise continuous maps having locally saturating sets which are not omega-limit sets. A condition implying that a locally saturating set is an omega-limit set is presented
Název v anglickém jazyce
The space of omega-limit sets of piecewise continuous maps of the interval
Popis výsledku anglicky
According to a well-known result, the collection of all omega-limit sets of a continuous map of the interval equipped with the Hausdorff metric is a compact metric space. In this paper, a similar result is proved for piecewise continuous maps with finitely many points of discontinuity, if the points of discontinuity are not periodic for any variant of the map. A variant of f is a map g coinciding with f at any point of continuity and being continuous from one side at any point of discontinuity. It is also shown that omega-limit sets of these maps are locally saturating, another property known for continuous maps. However, contrary to the situation for continuous maps, there are piecewise continuous maps having locally saturating sets which are not omega-limit sets. A condition implying that a locally saturating set is an omega-limit set is presented
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
2-3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000275127200012
EID výsledku v databázi Scopus
—