On construction of symmetries and recursion operators from zero-curvature representations and the Darboux?Egoroff system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F14%3A%230000454" target="_blank" >RIV/47813059:19610/14:#0000454 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0393044014001065" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0393044014001065</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2014.05.017" target="_blank" >10.1016/j.geomphys.2014.05.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On construction of symmetries and recursion operators from zero-curvature representations and the Darboux?Egoroff system
Popis výsledku v původním jazyce
The Darboux-Egoroff system of PDEs with any number n >= 3 of independent variables plays an essential role in the problems of describing n-dimensional flat diagonal metrics of Egoroff type and Frobenius manifolds. We construct a recursion operator and its inverse for symmetries of the Darboux-Egoroff system and describe some symmetries generated by these operators. The constructed recursion operators are not pseudodifferential, but are Backlund autotransformations for the linearized system whose solutions correspond to symmetries of the Darboux-Egoroff system. For some other PDEs, recursion operators of similar types were considered previously by Papachristou, Guthrie, Marvan, Poboril, and Sergyeyev. In the structure of the obtained third and fifth order symmetries of the Darboux-Egoroff system, one finds the third and fifth order flows of an (n - 1)-component vector modified KdV hierarchy. The constructed recursion operators generate also an infinite number of nonlocal symmetries. In
Název v anglickém jazyce
On construction of symmetries and recursion operators from zero-curvature representations and the Darboux?Egoroff system
Popis výsledku anglicky
The Darboux-Egoroff system of PDEs with any number n >= 3 of independent variables plays an essential role in the problems of describing n-dimensional flat diagonal metrics of Egoroff type and Frobenius manifolds. We construct a recursion operator and its inverse for symmetries of the Darboux-Egoroff system and describe some symmetries generated by these operators. The constructed recursion operators are not pseudodifferential, but are Backlund autotransformations for the linearized system whose solutions correspond to symmetries of the Darboux-Egoroff system. For some other PDEs, recursion operators of similar types were considered previously by Papachristou, Guthrie, Marvan, Poboril, and Sergyeyev. In the structure of the obtained third and fifth order symmetries of the Darboux-Egoroff system, one finds the third and fifth order flows of an (n - 1)-component vector modified KdV hierarchy. The constructed recursion operators generate also an infinite number of nonlocal symmetries. In
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
—
Svazek periodika
85
Číslo periodika v rámci svazku
November 2014
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
106-123
Kód UT WoS článku
000342540500012
EID výsledku v databázi Scopus
—