Existence of chaos in the plane $mathbb{R}^2$ and its application in macroeconomics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F15%3A%230000505" target="_blank" >RIV/47813059:19610/15:#0000505 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0096300315001277" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0096300315001277</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2015.01.095" target="_blank" >10.1016/j.amc.2015.01.095</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Existence of chaos in the plane $mathbb{R}^2$ and its application in macroeconomics
Popis výsledku v původním jazyce
The Devaney, Li-Yorke and distributional chaos in the plane R-2 can occur in the continuous dynamical system generated by Euler equation branching. Euler equation branching is a type of differential inclusion (x) over dot is an element of{f(x), g(x)}, where f,g : X subset of R-n -> R-n are continuous and f (x) not equal g(x) in every point x is an element of X. Stockman and Raines (2010) defined the so-called chaotic set in the plane R-2 whose existence leads to the existence of Devaney, Li-Yorke and distributional chaos. In this paper, we follow up on Stockman and Raines (2010) and we show that chaos in the plane R-2 is always admitted for hyperbolic singular points in both branches not lying in the same point in R-2. But the chaos existence is also caused by a set of solutions of Euler equation branching. We research this set of solutions. In the second part we create the new overall macroeconomic equilibrium model called IS-LM/QY-ML model. This model is based on the fundamental macr
Název v anglickém jazyce
Existence of chaos in the plane $mathbb{R}^2$ and its application in macroeconomics
Popis výsledku anglicky
The Devaney, Li-Yorke and distributional chaos in the plane R-2 can occur in the continuous dynamical system generated by Euler equation branching. Euler equation branching is a type of differential inclusion (x) over dot is an element of{f(x), g(x)}, where f,g : X subset of R-n -> R-n are continuous and f (x) not equal g(x) in every point x is an element of X. Stockman and Raines (2010) defined the so-called chaotic set in the plane R-2 whose existence leads to the existence of Devaney, Li-Yorke and distributional chaos. In this paper, we follow up on Stockman and Raines (2010) and we show that chaos in the plane R-2 is always admitted for hyperbolic singular points in both branches not lying in the same point in R-2. But the chaos existence is also caused by a set of solutions of Euler equation branching. We research this set of solutions. In the second part we create the new overall macroeconomic equilibrium model called IS-LM/QY-ML model. This model is based on the fundamental macr
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Svazek periodika
258
Číslo periodika v rámci svazku
1 May 2015
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
30
Strana od-do
237-266
Kód UT WoS článku
000351668500026
EID výsledku v databázi Scopus
2-s2.0-84923632703