Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Omega-limit sets and invariant chaos in dimension one

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F16%3AN0000177" target="_blank" >RIV/47813059:19610/16:N0000177 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.tandfonline.com/doi/full/10.1080/10236198.2015.1106485" target="_blank" >http://www.tandfonline.com/doi/full/10.1080/10236198.2015.1106485</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/10236198.2015.1106485" target="_blank" >10.1080/10236198.2015.1106485</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Omega-limit sets and invariant chaos in dimension one

  • Popis výsledku v původním jazyce

    Omega-limit sets play an important role in one-dimensional dynamics. During last fifty year at least three definitions of basic set has appeared. Authors often use results with different definition. Here we fill in the gap of missing proof of equivalency of these definitions. Using results on basic sets we generalize results in paper [P. Oprocha, Invariant scrambled sets and distributional chaos, Dyn. Syst. 24 (2009), no. 1, 31-43.] to the case continuous maps of finite graphs. The Li-Yorke chaos is weaker than positive topological entropy. The equivalency arises when we add condition of invariance to Li-Yorke scrambled set. In this note we show that for a continuous graph map properties positive topological entropy; horseshoe; invariant Li-Yorke scrambled set; uniform invariant distributional chaotic scrambled set and distributionaly chaotic pair are mutually equivalent.

  • Název v anglickém jazyce

    Omega-limit sets and invariant chaos in dimension one

  • Popis výsledku anglicky

    Omega-limit sets play an important role in one-dimensional dynamics. During last fifty year at least three definitions of basic set has appeared. Authors often use results with different definition. Here we fill in the gap of missing proof of equivalency of these definitions. Using results on basic sets we generalize results in paper [P. Oprocha, Invariant scrambled sets and distributional chaos, Dyn. Syst. 24 (2009), no. 1, 31-43.] to the case continuous maps of finite graphs. The Li-Yorke chaos is weaker than positive topological entropy. The equivalency arises when we add condition of invariance to Li-Yorke scrambled set. In this note we show that for a continuous graph map properties positive topological entropy; horseshoe; invariant Li-Yorke scrambled set; uniform invariant distributional chaotic scrambled set and distributionaly chaotic pair are mutually equivalent.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EE2.3.20.0002" target="_blank" >EE2.3.20.0002: Rozvoj vědeckých kapacit Matematického ústavu Slezské univerzity v Opavě</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Difference Equations and Applications

  • ISSN

    1023-6198

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    6

  • Strana od-do

    468-473

  • Kód UT WoS článku

    000375012300007

  • EID výsledku v databázi Scopus

    2-s2.0-84946606994