Omega-limit sets and invariant chaos in dimension one
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F16%3AN0000177" target="_blank" >RIV/47813059:19610/16:N0000177 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.tandfonline.com/doi/full/10.1080/10236198.2015.1106485" target="_blank" >http://www.tandfonline.com/doi/full/10.1080/10236198.2015.1106485</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2015.1106485" target="_blank" >10.1080/10236198.2015.1106485</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Omega-limit sets and invariant chaos in dimension one
Popis výsledku v původním jazyce
Omega-limit sets play an important role in one-dimensional dynamics. During last fifty year at least three definitions of basic set has appeared. Authors often use results with different definition. Here we fill in the gap of missing proof of equivalency of these definitions. Using results on basic sets we generalize results in paper [P. Oprocha, Invariant scrambled sets and distributional chaos, Dyn. Syst. 24 (2009), no. 1, 31-43.] to the case continuous maps of finite graphs. The Li-Yorke chaos is weaker than positive topological entropy. The equivalency arises when we add condition of invariance to Li-Yorke scrambled set. In this note we show that for a continuous graph map properties positive topological entropy; horseshoe; invariant Li-Yorke scrambled set; uniform invariant distributional chaotic scrambled set and distributionaly chaotic pair are mutually equivalent.
Název v anglickém jazyce
Omega-limit sets and invariant chaos in dimension one
Popis výsledku anglicky
Omega-limit sets play an important role in one-dimensional dynamics. During last fifty year at least three definitions of basic set has appeared. Authors often use results with different definition. Here we fill in the gap of missing proof of equivalency of these definitions. Using results on basic sets we generalize results in paper [P. Oprocha, Invariant scrambled sets and distributional chaos, Dyn. Syst. 24 (2009), no. 1, 31-43.] to the case continuous maps of finite graphs. The Li-Yorke chaos is weaker than positive topological entropy. The equivalency arises when we add condition of invariance to Li-Yorke scrambled set. In this note we show that for a continuous graph map properties positive topological entropy; horseshoe; invariant Li-Yorke scrambled set; uniform invariant distributional chaotic scrambled set and distributionaly chaotic pair are mutually equivalent.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.20.0002" target="_blank" >EE2.3.20.0002: Rozvoj vědeckých kapacit Matematického ústavu Slezské univerzity v Opavě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
468-473
Kód UT WoS článku
000375012300007
EID výsledku v databázi Scopus
2-s2.0-84946606994