Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Li-Yorke sensitive and weak mixing dynamical systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F18%3AA0000028" target="_blank" >RIV/47813059:19610/18:A0000028 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/full/10.1080/10236198.2017.1304545" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/10236198.2017.1304545</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/10236198.2017.1304545" target="_blank" >10.1080/10236198.2017.1304545</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Li-Yorke sensitive and weak mixing dynamical systems

  • Popis výsledku v původním jazyce

    Akin and Kolyada in 2003 [E. Akin, S. Kolyada, Li–Yorke sensitivity, Nonlinearity 16 (2003), pp. 1421–1433] introduced the notion of Li–Yorke sensitivity. They proved that every weak mixing system (X, T), where X is a compact metric space and T a continuous map of X is Li–Yorke sensitive. An example of Li–Yorke sensitive system without weak mixing factors was given in [M. Čiklová, Li–Yorke sensitive minimal maps, Nonlinearity 19 (2006), pp. 517–529] (see also [M. Čiklová-Mlíchová, Li–Yorke sensitive minimal maps II, Nonlinearity 22 (2009), pp. 1569–1573]). In their paper, Akin and Kolyada conjectured that every minimal system with a weak mixing factor, is Li–Yorke sensitive. We provide arguments supporting this conjecture though the proof seems to be difficult.

  • Název v anglickém jazyce

    Li-Yorke sensitive and weak mixing dynamical systems

  • Popis výsledku anglicky

    Akin and Kolyada in 2003 [E. Akin, S. Kolyada, Li–Yorke sensitivity, Nonlinearity 16 (2003), pp. 1421–1433] introduced the notion of Li–Yorke sensitivity. They proved that every weak mixing system (X, T), where X is a compact metric space and T a continuous map of X is Li–Yorke sensitive. An example of Li–Yorke sensitive system without weak mixing factors was given in [M. Čiklová, Li–Yorke sensitive minimal maps, Nonlinearity 19 (2006), pp. 517–529] (see also [M. Čiklová-Mlíchová, Li–Yorke sensitive minimal maps II, Nonlinearity 22 (2009), pp. 1569–1573]). In their paper, Akin and Kolyada conjectured that every minimal system with a weak mixing factor, is Li–Yorke sensitive. We provide arguments supporting this conjecture though the proof seems to be difficult.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Difference Equations and Applications

  • ISSN

    1023-6198

  • e-ISSN

    1563-5120

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

    667-674

  • Kód UT WoS článku

    000427557900003

  • EID výsledku v databázi Scopus

    2-s2.0-85016086074