Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa-Holm equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F19%3AA0000061" target="_blank" >RIV/47813059:19610/19:A0000061 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0022039619302505?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039619302505?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2019.05.033" target="_blank" >10.1016/j.jde.2019.05.033</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa-Holm equation

  • Popis výsledku v původním jazyce

    In this paper we consider a five-parameter equation including the Camassa-Holm and the Dullin-Gottwald-Holm equations, among others. We prove the existence and uniqueness of solutions of the Cauchy problem using Kato's approach. Conservation laws of the equation, up to second order, are also investigated. From these conservation laws we establish some properties for the solutions of the equation and we also find a quadrature for it. The quadrature obtained is of capital importance in a classification of bounded travelling wave solutions. We also find some explicit solutions, given in terms of elliptic integrals. Finally, we classify the members of the equation describing pseudo-spherical surfaces.

  • Název v anglickém jazyce

    Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa-Holm equation

  • Popis výsledku anglicky

    In this paper we consider a five-parameter equation including the Camassa-Holm and the Dullin-Gottwald-Holm equations, among others. We prove the existence and uniqueness of solutions of the Cauchy problem using Kato's approach. Conservation laws of the equation, up to second order, are also investigated. From these conservation laws we establish some properties for the solutions of the equation and we also find a quadrature for it. The quadrature obtained is of capital importance in a classification of bounded travelling wave solutions. We also find some explicit solutions, given in terms of elliptic integrals. Finally, we classify the members of the equation describing pseudo-spherical surfaces.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

    1090-2732

  • Svazek periodika

    267

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    52

  • Strana od-do

    5318-5369

  • Kód UT WoS článku

    000480416600011

  • EID výsledku v databázi Scopus

    2-s2.0-85066321295