Wave breaking for shallow water models with time decaying solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F20%3AA0000086" target="_blank" >RIV/47813059:19610/20:A0000086 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022039620301182?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039620301182?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2020.03.011" target="_blank" >10.1016/j.jde.2020.03.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wave breaking for shallow water models with time decaying solutions
Popis výsledku v původním jazyce
A family of Camassa-Holm type equations with a linear term and cubic and quartic nonlinearities is considered. Local well-posedness results are established via Kato's approach. Conserved quantities for the equation are determined and from them we prove that the energy functional of the solutions is a time-dependent, monotonically decreasing function of time, and bounded from above by the Sobolev norm of the initial data under some conditions. The existence of wave breaking phenomenon is investigated and necessary conditions for its existence are obtained. In our framework the wave breaking is guaranteed, among other conditions, when the coefficient of the linear term is sufficiently small, which allows us to interpret the equation as a linear perturbation of some recent Camassa-Holm type equations considered in the literature.
Název v anglickém jazyce
Wave breaking for shallow water models with time decaying solutions
Popis výsledku anglicky
A family of Camassa-Holm type equations with a linear term and cubic and quartic nonlinearities is considered. Local well-posedness results are established via Kato's approach. Conserved quantities for the equation are determined and from them we prove that the energy functional of the solutions is a time-dependent, monotonically decreasing function of time, and bounded from above by the Sobolev norm of the initial data under some conditions. The existence of wave breaking phenomenon is investigated and necessary conditions for its existence are obtained. In our framework the wave breaking is guaranteed, among other conditions, when the coefficient of the linear term is sufficiently small, which allows us to interpret the equation as a linear perturbation of some recent Camassa-Holm type equations considered in the literature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Svazek periodika
269
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
3769-3793
Kód UT WoS článku
000534488300032
EID výsledku v databázi Scopus
2-s2.0-85081255919