Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa-Holm equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F20%3AA0000083" target="_blank" >RIV/47813059:19610/20:A0000083 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1111/sapm.12327" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/sapm.12327</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/sapm.12327" target="_blank" >10.1111/sapm.12327</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa-Holm equation
Popis výsledku v původním jazyce
Recent generalizations of the Camassa-Holm equation are studied from the point of view of existence of global solutions, criteria for wave breaking phenomena and integrability. We provide conditions, based on lower bounds for the first spatial derivative of local solutions, for global well-posedness in Sobolev spaces for the family under consideration. Moreover, we prove that wave breaking phenomena occurs under certain mild hypothesis. Based on the machinery developed by Dubrovin [Commun. Math. Phys. 267, 117-139 (2006)] regarding bi-Hamiltonian deformations, we introduce the notion of quasi-integrability and prove that there exists a unique bi-Hamiltonian structure for the equation only when it is reduced to the Dullin-Gotwald-Holm equation. Our results suggest that a recent shallow water model incorporating Coriollis effects is integrable only in specific situations. Finally, to finish the scheme of geometric integrability of the family of equations initiated in a previous work, we prove that the Dullin-Gotwald-Holm equation describes pseudo-spherical surfaces.
Název v anglickém jazyce
Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa-Holm equation
Popis výsledku anglicky
Recent generalizations of the Camassa-Holm equation are studied from the point of view of existence of global solutions, criteria for wave breaking phenomena and integrability. We provide conditions, based on lower bounds for the first spatial derivative of local solutions, for global well-posedness in Sobolev spaces for the family under consideration. Moreover, we prove that wave breaking phenomena occurs under certain mild hypothesis. Based on the machinery developed by Dubrovin [Commun. Math. Phys. 267, 117-139 (2006)] regarding bi-Hamiltonian deformations, we introduce the notion of quasi-integrability and prove that there exists a unique bi-Hamiltonian structure for the equation only when it is reduced to the Dullin-Gotwald-Holm equation. Our results suggest that a recent shallow water model incorporating Coriollis effects is integrable only in specific situations. Finally, to finish the scheme of geometric integrability of the family of equations initiated in a previous work, we prove that the Dullin-Gotwald-Holm equation describes pseudo-spherical surfaces.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studies in Applied Mathematics
ISSN
0022-2526
e-ISSN
1467-9590
Svazek periodika
145
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
537-562
Kód UT WoS článku
000550818600001
EID výsledku v databázi Scopus
2-s2.0-85088384561