Extended symmetry analysis of an isothermal no-slip drift flux model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F20%3AA0000064" target="_blank" >RIV/47813059:19610/20:A0000064 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167278919301745?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167278919301745?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2019.132188" target="_blank" >10.1016/j.physd.2019.132188</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extended symmetry analysis of an isothermal no-slip drift flux model
Popis výsledku v původním jazyce
We perform extended group analysis for a system of differential equations modeling an isothermal no slip drift flux. The maximal Lie invariance algebra of this system is proved to be infinite-dimensional. We also find the complete point symmetry group of this system, including discrete symmetries, using the megaideal-based version of the algebraic method. Optimal lists of one- and two-dimensional subalgebras of the maximal Lie invariance algebra in question are constructed and employed for obtaining reductions of the system under study. Since this system contains a subsystem of two equations that involves only two of three dependent variables, we also perform group analysis of this subsystem. The latter can be linearized by a composition of a fiber-preserving point transformation with a two-dimensional hodograph transformation to the Klein-Gordon equation. We also employ both the linearization and the generalized hodograph method for constructing the general solution of the entire system under study. We find inter alia genuinely generalized symmetries for this system and present the connection between them and the Lie symmetries of the subsystem we mentioned earlier. Hydrodynamic conservation laws and their generalizations are also constructed.
Název v anglickém jazyce
Extended symmetry analysis of an isothermal no-slip drift flux model
Popis výsledku anglicky
We perform extended group analysis for a system of differential equations modeling an isothermal no slip drift flux. The maximal Lie invariance algebra of this system is proved to be infinite-dimensional. We also find the complete point symmetry group of this system, including discrete symmetries, using the megaideal-based version of the algebraic method. Optimal lists of one- and two-dimensional subalgebras of the maximal Lie invariance algebra in question are constructed and employed for obtaining reductions of the system under study. Since this system contains a subsystem of two equations that involves only two of three dependent variables, we also perform group analysis of this subsystem. The latter can be linearized by a composition of a fiber-preserving point transformation with a two-dimensional hodograph transformation to the Klein-Gordon equation. We also employ both the linearization and the generalized hodograph method for constructing the general solution of the entire system under study. We find inter alia genuinely generalized symmetries for this system and present the connection between them and the Lie symmetries of the subsystem we mentioned earlier. Hydrodynamic conservation laws and their generalizations are also constructed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica D: Nonlinear Phenomena
ISSN
0167-2789
e-ISSN
1872-8022
Svazek periodika
402
Číslo periodika v rámci svazku
132188
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
„132188-1“-„132188-16“
Kód UT WoS článku
000512219900003
EID výsledku v databázi Scopus
2-s2.0-85072998138