Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Point and generalized symmetries of the heat equation revisited

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000142" target="_blank" >RIV/47813059:19610/23:A0000142 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0022247X2300433X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X2300433X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2023.127430" target="_blank" >10.1016/j.jmaa.2023.127430</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Point and generalized symmetries of the heat equation revisited

  • Popis výsledku v původním jazyce

    We derive a nice representation for point symmetry transformations of the (1+1)-dimensional linear heat equation and properly interpret them. This allows us to prove that the pseudogroup of these transformations has exactly two connected components. That is, the heat equation admits a single independent discrete symmetry, which can be chosen to be alternating the sign of the dependent variable. We introduce the notion of pseudo-discrete elements of a Lie group and show that alternating the sign of the space variable, which was for a long time misinterpreted as a discrete symmetry of the heat equation, is in fact a pseudo-discrete element of its essential point symmetry group. The classification of subalgebras of the essential Lie invariance algebra of the heat equation is enhanced and the description of generalized symmetries of this equation is refined as well. We also consider the Burgers equation because of its relation to the heat equation and prove that it admits no discrete point symmetries. The developed approach to point-symmetry groups whose elements have components that are linear fractional in some variables can directly be extended to many other linear and nonlinear differential equations.

  • Název v anglickém jazyce

    Point and generalized symmetries of the heat equation revisited

  • Popis výsledku anglicky

    We derive a nice representation for point symmetry transformations of the (1+1)-dimensional linear heat equation and properly interpret them. This allows us to prove that the pseudogroup of these transformations has exactly two connected components. That is, the heat equation admits a single independent discrete symmetry, which can be chosen to be alternating the sign of the dependent variable. We introduce the notion of pseudo-discrete elements of a Lie group and show that alternating the sign of the space variable, which was for a long time misinterpreted as a discrete symmetry of the heat equation, is in fact a pseudo-discrete element of its essential point symmetry group. The classification of subalgebras of the essential Lie invariance algebra of the heat equation is enhanced and the description of generalized symmetries of this equation is refined as well. We also consider the Burgers equation because of its relation to the heat equation and prove that it admits no discrete point symmetries. The developed approach to point-symmetry groups whose elements have components that are linear fractional in some variables can directly be extended to many other linear and nonlinear differential equations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Svazek periodika

    527

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    „127430-1“-„127430-21“

  • Kód UT WoS článku

    001018236500001

  • EID výsledku v databázi Scopus

    2-s2.0-85161043260