Point and generalized symmetries of the heat equation revisited
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000142" target="_blank" >RIV/47813059:19610/23:A0000142 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022247X2300433X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X2300433X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2023.127430" target="_blank" >10.1016/j.jmaa.2023.127430</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Point and generalized symmetries of the heat equation revisited
Popis výsledku v původním jazyce
We derive a nice representation for point symmetry transformations of the (1+1)-dimensional linear heat equation and properly interpret them. This allows us to prove that the pseudogroup of these transformations has exactly two connected components. That is, the heat equation admits a single independent discrete symmetry, which can be chosen to be alternating the sign of the dependent variable. We introduce the notion of pseudo-discrete elements of a Lie group and show that alternating the sign of the space variable, which was for a long time misinterpreted as a discrete symmetry of the heat equation, is in fact a pseudo-discrete element of its essential point symmetry group. The classification of subalgebras of the essential Lie invariance algebra of the heat equation is enhanced and the description of generalized symmetries of this equation is refined as well. We also consider the Burgers equation because of its relation to the heat equation and prove that it admits no discrete point symmetries. The developed approach to point-symmetry groups whose elements have components that are linear fractional in some variables can directly be extended to many other linear and nonlinear differential equations.
Název v anglickém jazyce
Point and generalized symmetries of the heat equation revisited
Popis výsledku anglicky
We derive a nice representation for point symmetry transformations of the (1+1)-dimensional linear heat equation and properly interpret them. This allows us to prove that the pseudogroup of these transformations has exactly two connected components. That is, the heat equation admits a single independent discrete symmetry, which can be chosen to be alternating the sign of the dependent variable. We introduce the notion of pseudo-discrete elements of a Lie group and show that alternating the sign of the space variable, which was for a long time misinterpreted as a discrete symmetry of the heat equation, is in fact a pseudo-discrete element of its essential point symmetry group. The classification of subalgebras of the essential Lie invariance algebra of the heat equation is enhanced and the description of generalized symmetries of this equation is refined as well. We also consider the Burgers equation because of its relation to the heat equation and prove that it admits no discrete point symmetries. The developed approach to point-symmetry groups whose elements have components that are linear fractional in some variables can directly be extended to many other linear and nonlinear differential equations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Svazek periodika
527
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
„127430-1“-„127430-21“
Kód UT WoS článku
001018236500001
EID výsledku v databázi Scopus
2-s2.0-85161043260