On Recursion Operators for Full-Fledged Nonlocal Symmetries of the Reduced Quasi-classical Self-dual Yang-Mills Equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000160" target="_blank" >RIV/47813059:19610/24:A0000160 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00023-024-01425-2" target="_blank" >https://link.springer.com/article/10.1007/s00023-024-01425-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00023-024-01425-2" target="_blank" >10.1007/s00023-024-01425-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Recursion Operators for Full-Fledged Nonlocal Symmetries of the Reduced Quasi-classical Self-dual Yang-Mills Equation
Popis výsledku v původním jazyce
We introduce the idea of constructing recursion operators for full-fledged nonlocal symmetries and apply it to the reduced quasi-classical self-dual Yang–Mills equation. It turns out that the discovered recursion operators can be interpreted as infinite-dimensional matrices of differential functions which act on the generating vector functions of the nonlocal symmetries simply by matrix multiplication. To the best of our knowledge, there are no other examples of such recursion operators in the literature so far, so our approach is completely innovative. Further, we investigate the algebraic properties of the discovered operators and discuss the R-algebra structure on the set of all recursion operators for full-fledged nonlocal symmetries of the equation in question. Finally, we illustrate the action of the obtained recursion operators on particularly chosen full-fledged symmetries and emphasize their advantages compared to the action of traditionally used recursion operators for shadows.
Název v anglickém jazyce
On Recursion Operators for Full-Fledged Nonlocal Symmetries of the Reduced Quasi-classical Self-dual Yang-Mills Equation
Popis výsledku anglicky
We introduce the idea of constructing recursion operators for full-fledged nonlocal symmetries and apply it to the reduced quasi-classical self-dual Yang–Mills equation. It turns out that the discovered recursion operators can be interpreted as infinite-dimensional matrices of differential functions which act on the generating vector functions of the nonlocal symmetries simply by matrix multiplication. To the best of our knowledge, there are no other examples of such recursion operators in the literature so far, so our approach is completely innovative. Further, we investigate the algebraic properties of the discovered operators and discuss the R-algebra structure on the set of all recursion operators for full-fledged nonlocal symmetries of the equation in question. Finally, we illustrate the action of the obtained recursion operators on particularly chosen full-fledged symmetries and emphasize their advantages compared to the action of traditionally used recursion operators for shadows.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annales Henri Poincaré
ISSN
1424-0637
e-ISSN
1424-0661
Svazek periodika
25
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
37
Strana od-do
4633-4669
Kód UT WoS článku
001172954900001
EID výsledku v databázi Scopus
2-s2.0-85186432738