Point-symmetry pseudogroup, Lie reductions and exact solutions of Boiti-Leon-Pempinelli system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000167" target="_blank" >RIV/47813059:19610/24:A0000167 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167278924000320" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167278924000320</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2024.134081" target="_blank" >10.1016/j.physd.2024.134081</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Point-symmetry pseudogroup, Lie reductions and exact solutions of Boiti-Leon-Pempinelli system
Popis výsledku v původním jazyce
We carry out extended symmetry analysis of the (1+2)-dimensional Boiti-Leon-Pempinelli system, which corrects, enhances and generalizes many results existing in the literature. The point-symmetry pseudogroup of this system is computed using an original megaideal-based version of the algebraic method. A number of meticulously selected differential constraints allow us to construct families of exact solutions of this system, which are significantly larger than all known ones. After classifying one- and two-dimensional subalgebras of the entire (infinite-dimensional) maximal Lie invariance algebra of this system, we study only its essential Lie reductions, which give solutions beyond the above solution families. Among reductions of the Boiti-Leon- Pempinelli system using differential constraints or Lie symmetries, we identify a number of famous partial and ordinary differential equations. We also show how all the constructed solution families can significantly be extended by Laplace and Darboux transformations.
Název v anglickém jazyce
Point-symmetry pseudogroup, Lie reductions and exact solutions of Boiti-Leon-Pempinelli system
Popis výsledku anglicky
We carry out extended symmetry analysis of the (1+2)-dimensional Boiti-Leon-Pempinelli system, which corrects, enhances and generalizes many results existing in the literature. The point-symmetry pseudogroup of this system is computed using an original megaideal-based version of the algebraic method. A number of meticulously selected differential constraints allow us to construct families of exact solutions of this system, which are significantly larger than all known ones. After classifying one- and two-dimensional subalgebras of the entire (infinite-dimensional) maximal Lie invariance algebra of this system, we study only its essential Lie reductions, which give solutions beyond the above solution families. Among reductions of the Boiti-Leon- Pempinelli system using differential constraints or Lie symmetries, we identify a number of famous partial and ordinary differential equations. We also show how all the constructed solution families can significantly be extended by Laplace and Darboux transformations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica D: Nonlinear Phenomena
ISSN
0167-2789
e-ISSN
1872-8022
Svazek periodika
460
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
„134081-1“-„134081-21“
Kód UT WoS článku
001202952600001
EID výsledku v databázi Scopus
2-s2.0-85185562047