Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Minimality and distributional chaos in triangular maps

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000171" target="_blank" >RIV/47813059:19610/24:A0000171 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/full/10.1080/10236198.2023.2293114" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/10236198.2023.2293114</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/10236198.2023.2293114" target="_blank" >10.1080/10236198.2023.2293114</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Minimality and distributional chaos in triangular maps

  • Popis výsledku v původním jazyce

    The result of this paper contributes to the classification of triangular maps of the square with zero topological entropy stated by A. N. Sharkovsky in the 1980s. The problem was if a triangular map of the square such that its any omega-limit set contains unique minimal set can be distributionally chaotic. So far such result was disproved only for the class of triangular maps non-decreasing on fibres [L. Paganoni, J. Smital, Strange distributionally chaotic triangular maps, Chaos Solitons Fractals 26(2) (2005), pp. 581-589]. In this paper, we solve the problem in negative for all triangular maps of the square, correcting the original result from Balibrea and Smital [Strong distributional chaos and minimal sets, Topology appl. 156 (2009), pp. 1673-1678].

  • Název v anglickém jazyce

    Minimality and distributional chaos in triangular maps

  • Popis výsledku anglicky

    The result of this paper contributes to the classification of triangular maps of the square with zero topological entropy stated by A. N. Sharkovsky in the 1980s. The problem was if a triangular map of the square such that its any omega-limit set contains unique minimal set can be distributionally chaotic. So far such result was disproved only for the class of triangular maps non-decreasing on fibres [L. Paganoni, J. Smital, Strange distributionally chaotic triangular maps, Chaos Solitons Fractals 26(2) (2005), pp. 581-589]. In this paper, we solve the problem in negative for all triangular maps of the square, correcting the original result from Balibrea and Smital [Strong distributional chaos and minimal sets, Topology appl. 156 (2009), pp. 1673-1678].

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Difference Equations and Applications

  • ISSN

    1023-6198

  • e-ISSN

    1563-5120

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

    1662-1670

  • Kód UT WoS článku

    001129458400001

  • EID výsledku v databázi Scopus

    2-s2.0-85180262430