Variational theory of the Ricci curvature tensor dynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F21%3AA0000134" target="_blank" >RIV/47813059:19630/21:A0000134 - isvavai.cz</a>
Výsledek na webu
<a href="https://epjc.epj.org/articles/epjc/abs/2021/11/10052_2021_Article_9847/10052_2021_Article_9847.html" target="_blank" >https://epjc.epj.org/articles/epjc/abs/2021/11/10052_2021_Article_9847/10052_2021_Article_9847.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjc/s10052-021-09847-6" target="_blank" >10.1140/epjc/s10052-021-09847-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Variational theory of the Ricci curvature tensor dynamics
Popis výsledku v původním jazyce
In this letter a new Lagrangian variational principle is proved to hold for the Einstein field equations, in which the independent variational tensor field is identified with the Ricci curvature tensor R mu. rather than the metric tensor g mu.. The corresponding Lagrangian function, denoted as L R, is realized by a polynomial expression of the Ricci 4-scalar R = g mu. R mu. and of the quadratic curvature 4scalar. = R mu. R mu.. The Lagrangian variational principle applies both to vacuum and non-vacuum cases and for its validity it demands a non-vanishing, and actually also positive, cosmological constant similar to > 0. Then, by implementing the deDonder-Weyl formalism, the physical conditions for the existence of amanifestly-covariant Hamiltonian structure associated with such a Lagrangian formulation are investigated. As a consequence, it is proved that the Ricci tensor can obey a Hamiltonian dynamics which is consistent with the solutions predicted by the Einstein field equations.
Název v anglickém jazyce
Variational theory of the Ricci curvature tensor dynamics
Popis výsledku anglicky
In this letter a new Lagrangian variational principle is proved to hold for the Einstein field equations, in which the independent variational tensor field is identified with the Ricci curvature tensor R mu. rather than the metric tensor g mu.. The corresponding Lagrangian function, denoted as L R, is realized by a polynomial expression of the Ricci 4-scalar R = g mu. R mu. and of the quadratic curvature 4scalar. = R mu. R mu.. The Lagrangian variational principle applies both to vacuum and non-vacuum cases and for its validity it demands a non-vanishing, and actually also positive, cosmological constant similar to > 0. Then, by implementing the deDonder-Weyl formalism, the physical conditions for the existence of amanifestly-covariant Hamiltonian structure associated with such a Lagrangian formulation are investigated. As a consequence, it is proved that the Ricci tensor can obey a Hamiltonian dynamics which is consistent with the solutions predicted by the Einstein field equations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Physical Journal C
ISSN
1434-6044
e-ISSN
1434-6052
Svazek periodika
81
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
„1030-1“-„1030-7“
Kód UT WoS článku
000722617400002
EID výsledku v databázi Scopus
2-s2.0-85120675432