Neuro-fuzzy approaches to estimating thermal overstress behavior of IGBTs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F21%3A43962329" target="_blank" >RIV/49777513:23220/21:43962329 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9432584" target="_blank" >https://ieeexplore.ieee.org/document/9432584</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/PEMC48073.2021.9432584" target="_blank" >10.1109/PEMC48073.2021.9432584</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neuro-fuzzy approaches to estimating thermal overstress behavior of IGBTs
Popis výsledku v původním jazyce
The Thermal overstress behavior of power semiconductor components is a determining factor to evaluate the reliability and performance of power electronic devices. Many theoretical and empirical methods have been presented to address the thermal effects of power electronics components on the quality of power systems. However, analyzing temperature brings to us a large number of uncertainties and nonlinearities affecting the accuracy of modeling. This paper proposes three neuro-fuzzy based techniques to estimate the temperature of Insulated Gate Bipolar Transistors (IGBTs). These techniques include grid partitioning clustering, Fuzzy C-Means (FCM) clustering, and subtractive clustering. An experimental dataset containing over 1.5 million data points is used to develop and train the proposed neuro-fuzzy approaches. This dataset is obtained during a comprehensive investigation on IGBTs and thermal effects by scientists at Ames Research Center of NASA. Preliminary results have demonstrated that the applied approaches are superior to estimating the thermal overstress behavior of IGBTs.
Název v anglickém jazyce
Neuro-fuzzy approaches to estimating thermal overstress behavior of IGBTs
Popis výsledku anglicky
The Thermal overstress behavior of power semiconductor components is a determining factor to evaluate the reliability and performance of power electronic devices. Many theoretical and empirical methods have been presented to address the thermal effects of power electronics components on the quality of power systems. However, analyzing temperature brings to us a large number of uncertainties and nonlinearities affecting the accuracy of modeling. This paper proposes three neuro-fuzzy based techniques to estimate the temperature of Insulated Gate Bipolar Transistors (IGBTs). These techniques include grid partitioning clustering, Fuzzy C-Means (FCM) clustering, and subtractive clustering. An experimental dataset containing over 1.5 million data points is used to develop and train the proposed neuro-fuzzy approaches. This dataset is obtained during a comprehensive investigation on IGBTs and thermal effects by scientists at Ames Research Center of NASA. Preliminary results have demonstrated that the applied approaches are superior to estimating the thermal overstress behavior of IGBTs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Elektrotechnické technologie s vysokým podílem vestavěné inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC) : /proceedings/
ISBN
978-1-72815-660-6
ISSN
—
e-ISSN
2473-0165
Počet stran výsledku
8
Strana od-do
843-850
Název nakladatele
IEEE
Místo vydání
Piscaway
Místo konání akce
Gliwice, Poland
Datum konání akce
25. 4. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000723843000120