Determining Probable Locations of Photovoltaic Modules Malfunctions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F24%3A43974041" target="_blank" >RIV/49777513:23220/24:43974041 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10717959" target="_blank" >https://ieeexplore.ieee.org/document/10717959</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SEFET61574.2024.10717959" target="_blank" >10.1109/SEFET61574.2024.10717959</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determining Probable Locations of Photovoltaic Modules Malfunctions
Popis výsledku v původním jazyce
This paper focuses on automation of processes applicable for fast and cheap diagnostics of PV plants. In general, there are some techniques commonly used for PV diagnostics (visual inspection, thermography, etc.). Main disadvantage of these methods is high time requirement and thus high labor costs. Smart usage of unmanned automated systems such as quadcopters can significantly increase the efficiency of the process and decrease the costs. But the process itself does not mean just the unmanned flight, but also the data acquisition. If we forget the legislative and technical complication of the flight and preflight preparation, the data analysis is the most complicated and time-consuming part. Particular steps of the analyses can be strongly optimized to decrease the time requirements but also affects technical aspects of the flight (UAS trajectory, operational time, battery consumption etc.). These aspects are being discusses and their influence on inspection methods is described. Application of these principles on single PV plant should decrease the time consumption and operational costs if compared to conventional diagnostic methods.
Název v anglickém jazyce
Determining Probable Locations of Photovoltaic Modules Malfunctions
Popis výsledku anglicky
This paper focuses on automation of processes applicable for fast and cheap diagnostics of PV plants. In general, there are some techniques commonly used for PV diagnostics (visual inspection, thermography, etc.). Main disadvantage of these methods is high time requirement and thus high labor costs. Smart usage of unmanned automated systems such as quadcopters can significantly increase the efficiency of the process and decrease the costs. But the process itself does not mean just the unmanned flight, but also the data acquisition. If we forget the legislative and technical complication of the flight and preflight preparation, the data analysis is the most complicated and time-consuming part. Particular steps of the analyses can be strongly optimized to decrease the time requirements but also affects technical aspects of the flight (UAS trajectory, operational time, battery consumption etc.). These aspects are being discusses and their influence on inspection methods is described. Application of these principles on single PV plant should decrease the time consumption and operational costs if compared to conventional diagnostic methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE 4th International Conference on Sustainable Energy and Future Electric Transportation (SEFET) : proceedings
ISBN
979-8-3503-8399-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Hyderabad, India
Datum konání akce
31. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—