Learning analytics at UWB - first approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23420%2F18%3A43958718" target="_blank" >RIV/49777513:23420/18:43958718 - isvavai.cz</a>
Výsledek na webu
<a href="https://disconference.eu/wp-content/uploads/2017/01/DisCo-2018-Overcoming-the-Challenges-and-Barries-in-Open-Education-13th-conference-reader-1.pdf" target="_blank" >https://disconference.eu/wp-content/uploads/2017/01/DisCo-2018-Overcoming-the-Challenges-and-Barries-in-Open-Education-13th-conference-reader-1.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning analytics at UWB - first approach
Popis výsledku v původním jazyce
The focus of this paper is the first look and interpretation of learning analytics data from learning management system (LMS) at the University of West Bohemia in Pilsen (UWB). We claim that there are three types of granularity of LMS data. The first type is top-level, which describes approaches and usage of LMS as a whole. The second one is course-level, which deals with the behaviour and activities of all users as a whole on a specific course. And the last user-type, which interprets the activities of users in the course, and looks for common patterns of behaviour. This paper presents the first two types of granularity, based on real data from the university LMS. We are inspired by many previous studies focusing on learning systems of the LMS that often pay attention especially to academic success prediction or at-risk student identification (e.g. Smith et al. 2012, Jayaprakash et al., 2014, Baker et al., 2015). These findings form the basis for further research on identifying user behaviour on the course, and identifying students at risk of learning failure.
Název v anglickém jazyce
Learning analytics at UWB - first approach
Popis výsledku anglicky
The focus of this paper is the first look and interpretation of learning analytics data from learning management system (LMS) at the University of West Bohemia in Pilsen (UWB). We claim that there are three types of granularity of LMS data. The first type is top-level, which describes approaches and usage of LMS as a whole. The second one is course-level, which deals with the behaviour and activities of all users as a whole on a specific course. And the last user-type, which interprets the activities of users in the course, and looks for common patterns of behaviour. This paper presents the first two types of granularity, based on real data from the university LMS. We are inspired by many previous studies focusing on learning systems of the LMS that often pay attention especially to academic success prediction or at-risk student identification (e.g. Smith et al. 2012, Jayaprakash et al., 2014, Baker et al., 2015). These findings form the basis for further research on identifying user behaviour on the course, and identifying students at risk of learning failure.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50301 - Education, general; including training, pedagogy, didactics [and education systems]
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
DisCo 2018: Overcoming the Challenges and the Barriers in Open Education : 13 th conference reader
ISBN
978-80-86302-83-6
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
271-278
Název nakladatele
Centre for Higher Education Studies
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
25. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000475841400024