Using process mining to analyze students' quiz-taking behavior patterns in a learning management system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23420%2F19%3A43950178" target="_blank" >RIV/49777513:23420/19:43950178 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14210/19:00108773
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0747563217306957" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0747563217306957</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chb.2017.12.015" target="_blank" >10.1016/j.chb.2017.12.015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using process mining to analyze students' quiz-taking behavior patterns in a learning management system
Popis výsledku v původním jazyce
The aim of this paper is to explore students’ behavior and interaction patterns in different types of online quiz-based activities within learning management systems (LMS). Analyzing students’ behavior in online learning activities and detecting specific patterns of interaction in LMS is a topic of great interest for the educational data mining (EDM) and learning analytics (LA) research communities. Previous studies have focused primarily on frequency analysis without addressing the temporal aspects of students’ learning behavior. Therefore, we apply a process-oriented approach, investigating perspectives on using process mining methods in the context of online learning and assessment. To explore a broad range of possible student behavior patterns, we analyze students’ interactions in several online quizzes from different courses and with different settings. Using process mining methods, we identify specific types of interaction sequences that shed new light on students’ quiz-taking strategies in LMS. We believe that these findings bring important implications for researchers studying student behavior in online environments as well as practitioners using online quizzes for learning and assessment.
Název v anglickém jazyce
Using process mining to analyze students' quiz-taking behavior patterns in a learning management system
Popis výsledku anglicky
The aim of this paper is to explore students’ behavior and interaction patterns in different types of online quiz-based activities within learning management systems (LMS). Analyzing students’ behavior in online learning activities and detecting specific patterns of interaction in LMS is a topic of great interest for the educational data mining (EDM) and learning analytics (LA) research communities. Previous studies have focused primarily on frequency analysis without addressing the temporal aspects of students’ learning behavior. Therefore, we apply a process-oriented approach, investigating perspectives on using process mining methods in the context of online learning and assessment. To explore a broad range of possible student behavior patterns, we analyze students’ interactions in several online quizzes from different courses and with different settings. Using process mining methods, we identify specific types of interaction sequences that shed new light on students’ quiz-taking strategies in LMS. We believe that these findings bring important implications for researchers studying student behavior in online environments as well as practitioners using online quizzes for learning and assessment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50301 - Education, general; including training, pedagogy, didactics [and education systems]
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers in Human Behavior
ISSN
0747-5632
e-ISSN
—
Svazek periodika
92
Číslo periodika v rámci svazku
March 2019
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
496-506
Kód UT WoS článku
000457504100049
EID výsledku v databázi Scopus
2-s2.0-85039452844