Correlation Structure of Underlying Assets Affecting Multi-Asset European Option Price
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23510%2F17%3A43932773" target="_blank" >RIV/49777513:23510/17:43932773 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Correlation Structure of Underlying Assets Affecting Multi-Asset European Option Price
Popis výsledku v původním jazyce
The paper deals with formulation of multi-asset European put option pricing problems assuming spot prices of underlying asset to follow geometric Brownian motion with correlation structure. Using traditional approach based on self-financing portfolio and application of It^{o}'s formula to option price, we get resulting partial differential equation describing the evolution of option price in space and time. The payoff function can take various form, two basic ones are presented in particular. Further, we discuss general concept which generates a set of low-dimensional initial-boundary value problems after time reversing substitution has been applied to original terminal-value problem. Numerical solution is focused on two-dimensional basket European put option problem. First, the problem is recast to variational formulation providing convenient platform for application of finite element method. Next, we present results of several numerical experiments to analyze influence of correlation structure of underlying assets upon option price. All calculations are performed by open source sw package FreeFem++.
Název v anglickém jazyce
Correlation Structure of Underlying Assets Affecting Multi-Asset European Option Price
Popis výsledku anglicky
The paper deals with formulation of multi-asset European put option pricing problems assuming spot prices of underlying asset to follow geometric Brownian motion with correlation structure. Using traditional approach based on self-financing portfolio and application of It^{o}'s formula to option price, we get resulting partial differential equation describing the evolution of option price in space and time. The payoff function can take various form, two basic ones are presented in particular. Further, we discuss general concept which generates a set of low-dimensional initial-boundary value problems after time reversing substitution has been applied to original terminal-value problem. Numerical solution is focused on two-dimensional basket European put option problem. First, the problem is recast to variational formulation providing convenient platform for application of finite element method. Next, we present results of several numerical experiments to analyze influence of correlation structure of underlying assets upon option price. All calculations are performed by open source sw package FreeFem++.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MME 2017 Conference Proceedings
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
414-419
Název nakladatele
University of Hradec Králové
Místo vydání
Hradec Králové
Místo konání akce
University of Hradec Králové
Datum konání akce
13. 9. 2017
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—