Multi-asset options with different payof functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23510%2F18%3A43954693" target="_blank" >RIV/49777513:23510/18:43954693 - isvavai.cz</a>
Výsledek na webu
<a href="https://mme2018.fm.vse.cz/" target="_blank" >https://mme2018.fm.vse.cz/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-asset options with different payof functions
Popis výsledku v původním jazyce
The paper deals with formulation of multi-asset option pricing problems with different payoff functions. Multi-variability is important concept in financial engineering as many non-standard structured products in the market are exposed to multiple source of randomness. Spot prices of underlying asset are assumed to follow geometric Brownian motion with correlation structure. Using traditional approach based on self-financing portfolio and application of Itˆo’s formula to option price we get resulting partial differential equation describing the evolution of option price in space and time. Most payoff functions are assumed to be non-negative convex function over a convex domain depending on underlying asset prices. Some typical examples of them are presented. Within a framework of multi-asset options a pricing of rainbow trend options was presented recently. In general, they are desirable to investors due to their diversification effects over different assets and time. We present the numerical implementation of pricing these options in Mathematica.
Název v anglickém jazyce
Multi-asset options with different payof functions
Popis výsledku anglicky
The paper deals with formulation of multi-asset option pricing problems with different payoff functions. Multi-variability is important concept in financial engineering as many non-standard structured products in the market are exposed to multiple source of randomness. Spot prices of underlying asset are assumed to follow geometric Brownian motion with correlation structure. Using traditional approach based on self-financing portfolio and application of Itˆo’s formula to option price we get resulting partial differential equation describing the evolution of option price in space and time. Most payoff functions are assumed to be non-negative convex function over a convex domain depending on underlying asset prices. Some typical examples of them are presented. Within a framework of multi-asset options a pricing of rainbow trend options was presented recently. In general, they are desirable to investors due to their diversification effects over different assets and time. We present the numerical implementation of pricing these options in Mathematica.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
36-th International Conference Mathematical Methods in Economics, Conference Proceedings
ISBN
978-80-7378-371-6
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
300-305
Název nakladatele
MatfyzPress, Publishing House of the Faculty of Mathematics and Physics Charles University, Prague
Místo vydání
Praha
Místo konání akce
Jindřichův Hradec
Datum konání akce
12. 9. 2018
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—