Adaptive algorithm for solution of early exercise boundary problem of American put option implemented in Mathematica
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23510%2F17%3A43932836" target="_blank" >RIV/49777513:23510/17:43932836 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1051/matecconf/2017/12504028" target="_blank" >http://dx.doi.org/10.1051/matecconf/2017/12504028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/matecconf/2017/12504028" target="_blank" >10.1051/matecconf/2017/12504028</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive algorithm for solution of early exercise boundary problem of American put option implemented in Mathematica
Popis výsledku v původním jazyce
The paper is focused on American option pricing problem. Assuming non-dividend paying American put option leads to two disjunctive regions, a continuation one and a stopping one, which are separated by an early exercise boundary. We present variational formulation of American option problem with special attention to early exercise action effect. Next, we discuss financially motivated additive decomposition of American option price into a European option price and another part due to the extra premium required by early exercising the option contract. As the optimal exercise boundary is a free boundary, its determination is coupled with the determination of the option price. Therefore, a closed-form expression of the free boundary is not attainable in general. We discuss in detail a derivation of an asymptotic expression of the early exercise boundary. Finally, we present some numerical results of determination of free boundary based upon this approach. All computations are performed by sw Mathematica, and suitable numerical procedure is discussed in detail, as well.
Název v anglickém jazyce
Adaptive algorithm for solution of early exercise boundary problem of American put option implemented in Mathematica
Popis výsledku anglicky
The paper is focused on American option pricing problem. Assuming non-dividend paying American put option leads to two disjunctive regions, a continuation one and a stopping one, which are separated by an early exercise boundary. We present variational formulation of American option problem with special attention to early exercise action effect. Next, we discuss financially motivated additive decomposition of American option price into a European option price and another part due to the extra premium required by early exercising the option contract. As the optimal exercise boundary is a free boundary, its determination is coupled with the determination of the option price. Therefore, a closed-form expression of the free boundary is not attainable in general. We discuss in detail a derivation of an asymptotic expression of the early exercise boundary. Finally, we present some numerical results of determination of free boundary based upon this approach. All computations are performed by sw Mathematica, and suitable numerical procedure is discussed in detail, as well.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MATEC Web of Conferences
ISBN
—
ISSN
2261-236X
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
EDP Sciences
Místo vydání
London
Místo konání akce
Agia Pelagia Beach Heraklion, Greece
Datum konání akce
14. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—