Numerical solution of integral equation for early exercise boundary of American put option
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23510%2F17%3A43933135" target="_blank" >RIV/49777513:23510/17:43933135 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical solution of integral equation for early exercise boundary of American put option
Popis výsledku v původním jazyce
The paper is focused on numerical approximation of early exercise boundary within American put option pricing problem. Assuming non-dividend paying, American put option leads to two disjunctive regions, a continuation one and a stopping one, which are separated by an early exercise boundary. We present variational formulation of American option problem with special attention to early exercise action effect. Next, we discuss financially motivated additive decomposition of American option price into a European option price and another part due to the extra premium required by early exercising the option contract. As the optimal exercise boundary is a free boundary, its determination is coupled with the determination of the option price. However, the integral equation is known for determination of early exercise boundary. We propose an iterative procedure for numerical solution of that integral equation. We discuss the construction of initial approximations, and we also describe the steps of our submitted procedure in details. Finally, we present some numerical results of determination of free boundary based upon this approach. All computations are performed by the sw Mathematica, version 11.1.
Název v anglickém jazyce
Numerical solution of integral equation for early exercise boundary of American put option
Popis výsledku anglicky
The paper is focused on numerical approximation of early exercise boundary within American put option pricing problem. Assuming non-dividend paying, American put option leads to two disjunctive regions, a continuation one and a stopping one, which are separated by an early exercise boundary. We present variational formulation of American option problem with special attention to early exercise action effect. Next, we discuss financially motivated additive decomposition of American option price into a European option price and another part due to the extra premium required by early exercising the option contract. As the optimal exercise boundary is a free boundary, its determination is coupled with the determination of the option price. However, the integral equation is known for determination of early exercise boundary. We propose an iterative procedure for numerical solution of that integral equation. We discuss the construction of initial approximations, and we also describe the steps of our submitted procedure in details. Finally, we present some numerical results of determination of free boundary based upon this approach. All computations are performed by the sw Mathematica, version 11.1.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
WSEAS Transaction on Business and Economics
ISSN
1109-9526
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
26
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
235-243
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85031290133