Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Update Summarization Based on Novel Topic Distribution

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00502156" target="_blank" >RIV/49777513:23520/09:00502156 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Update Summarization Based on Novel Topic Distribution

  • Popis výsledku v původním jazyce

    This paper deals with our recent research in text summarization. The field has moved from multi-document summarization to update summarization. When producing an update summary of a set of topic-related documents the summarizer assumes prior knowledge ofthe reader determined by a set of older documents of the same topic. The update summarizer thus must solve a novelty vs. redundancy problem. We describe the development of our summarizer which is based on Iterative Residual Rescaling (IRR) that createsthe latent semantic space of a set of documents under consideration. IRR generalizes Singular Value Decomposition (SVD) and enables to control the influence of major and minor topics in the latent space. Our sentence-extractive summarization method computes the redundancy, novelty and significance of each topic. These values are finally used in the sentence selection process. The sentence selection component prevents inner summary redundancy.

  • Název v anglickém jazyce

    Update Summarization Based on Novel Topic Distribution

  • Popis výsledku anglicky

    This paper deals with our recent research in text summarization. The field has moved from multi-document summarization to update summarization. When producing an update summary of a set of topic-related documents the summarizer assumes prior knowledge ofthe reader determined by a set of older documents of the same topic. The update summarizer thus must solve a novelty vs. redundancy problem. We describe the development of our summarizer which is based on Iterative Residual Rescaling (IRR) that createsthe latent semantic space of a set of documents under consideration. IRR generalizes Singular Value Decomposition (SVD) and enables to control the influence of major and minor topics in the latent space. Our sentence-extractive summarization method computes the redundancy, novelty and significance of each topic. These values are finally used in the sentence selection process. The sentence selection component prevents inner summary redundancy.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/2C06009" target="_blank" >2C06009: Prostředky tvorby komplexní báze znalostí pro komunikaci se sémantickým webem v přirozeném jazyce</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    DocEng'09

  • ISBN

    978-1-60558-575-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

  • Název nakladatele

    ACM

  • Místo vydání

    New York

  • Místo konání akce

    Mnichov

  • Datum konání akce

    18. 9. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000272193400034