Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Development of a Randomised Unscented Kalman Filter

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43898208" target="_blank" >RIV/49777513:23520/11:43898208 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.3182/20110828-6-IT-1002.01828" target="_blank" >http://dx.doi.org/10.3182/20110828-6-IT-1002.01828</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3182/20110828-6-IT-1002.01828" target="_blank" >10.3182/20110828-6-IT-1002.01828</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Development of a Randomised Unscented Kalman Filter

  • Popis výsledku v původním jazyce

    The paper deals with state estimation of nonlinear stochastic dynamic systems. Traditional filters providing local estimates of the states, such as the extended Kalman filter, unscented Kalman filter or the cubature Kalman filter, are based on approximations which lead to biased estimates of the state and measurement statistics. The aim of the paper is to propose a new local filter that utilises a randomised unscented transformation which is a special case of stochastic integration rules providing an unbiased estimate of an integral. The new filter provides estimates of higher quality than the traditional filters and renders a randomised version of the unscented Kalman filter. The proposed filter is illustrated in a numerical example.

  • Název v anglickém jazyce

    The Development of a Randomised Unscented Kalman Filter

  • Popis výsledku anglicky

    The paper deals with state estimation of nonlinear stochastic dynamic systems. Traditional filters providing local estimates of the states, such as the extended Kalman filter, unscented Kalman filter or the cubature Kalman filter, are based on approximations which lead to biased estimates of the state and measurement statistics. The aim of the paper is to propose a new local filter that utilises a randomised unscented transformation which is a special case of stochastic integration rules providing an unbiased estimate of an integral. The new filter provides estimates of higher quality than the traditional filters and renders a randomised version of the unscented Kalman filter. The proposed filter is illustrated in a numerical example.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IFAC Proceedings Volumes (IFAC-PapersOnline)

  • ISSN

    1474-6670

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    IT - Italská republika

  • Počet stran výsledku

    6

  • Strana od-do

    8-13

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus