Truncation nonlinear filters for state estimation with nonlinear inequality constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43897452" target="_blank" >RIV/49777513:23520/12:43897452 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.automatica.2011.11.002" target="_blank" >http://dx.doi.org/10.1016/j.automatica.2011.11.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.automatica.2011.11.002" target="_blank" >10.1016/j.automatica.2011.11.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Truncation nonlinear filters for state estimation with nonlinear inequality constraints
Popis výsledku v původním jazyce
The paper focuses on the state estimation problem of nonlinear non-Gaussian systems with state subject to a nonlinear inequality constraint. Taking into account the available additional information about the state given by the constraint increases the estimate quality compared to classical state estimation methods which cannot utilize the information. Considering the constraint in the form of an inequality involving a nonlinear function of the state makes the state estimation problem difficult and hencetreated only marginally. In this paper, a generic local filter for the inequality constrained estimation problem is proposed. It covers the extended Kalman filter, unscented Kalman filter, and divided difference filter as special cases and enforces theconstraint by truncating the conditional density of the state. The same idea is then utilized in a truncation Gaussian mixture filter which is also proposed in the paper to increase the estimate quality further by providing a global const
Název v anglickém jazyce
Truncation nonlinear filters for state estimation with nonlinear inequality constraints
Popis výsledku anglicky
The paper focuses on the state estimation problem of nonlinear non-Gaussian systems with state subject to a nonlinear inequality constraint. Taking into account the available additional information about the state given by the constraint increases the estimate quality compared to classical state estimation methods which cannot utilize the information. Considering the constraint in the form of an inequality involving a nonlinear function of the state makes the state estimation problem difficult and hencetreated only marginally. In this paper, a generic local filter for the inequality constrained estimation problem is proposed. It covers the extended Kalman filter, unscented Kalman filter, and divided difference filter as special cases and enforces theconstraint by truncating the conditional density of the state. The same idea is then utilized in a truncation Gaussian mixture filter which is also proposed in the paper to increase the estimate quality further by providing a global const
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP103%2F11%2F1353" target="_blank" >GAP103/11/1353: Odhad stavu dynamických stochastických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AUTOMATICA
ISSN
0005-1098
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
"273?286"
Kód UT WoS článku
000301213200004
EID výsledku v databázi Scopus
—