Closure, clique covering and degree conditions for Hamilton-connectedness in claw-free graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915021" target="_blank" >RIV/49777513:23520/12:43915021 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.disc.2012.02.027" target="_blank" >http://dx.doi.org/10.1016/j.disc.2012.02.027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2012.02.027" target="_blank" >10.1016/j.disc.2012.02.027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Closure, clique covering and degree conditions for Hamilton-connectedness in claw-free graphs
Popis výsledku v původním jazyce
We strengthen the closure concept for Hamilton-connectedness in claw-free graphs, introduced by the second and fourth authors, such that the strong closure of a claw-free graph is the line graph of a multigraph containing at most two triangles or at mostone double edge. Using the concept of strong closure, we prove that a 3-connected claw-free graph G is Hamilton-connected if G satisfies one of the following: (i) G can be covered by at most 5 cliques, (ii) G has minimum degree at least 4 and can be covered by at most 6 cliques, (iii) G has minimum degree at least 6 and can be covered by at most 7 cliques. Finally, by reconsidering the relation between degree conditions and clique coverings in the case of the strong closure, we prove (as a corollary ofa minimum degree sum result) that every 3-connected claw-free graph G of order at least 142 and minimum degree at least (n+50)/8 ) is Hamilton-connected. We also show that our results are asymptotically sharp.
Název v anglickém jazyce
Closure, clique covering and degree conditions for Hamilton-connectedness in claw-free graphs
Popis výsledku anglicky
We strengthen the closure concept for Hamilton-connectedness in claw-free graphs, introduced by the second and fourth authors, such that the strong closure of a claw-free graph is the line graph of a multigraph containing at most two triangles or at mostone double edge. Using the concept of strong closure, we prove that a 3-connected claw-free graph G is Hamilton-connected if G satisfies one of the following: (i) G can be covered by at most 5 cliques, (ii) G has minimum degree at least 4 and can be covered by at most 6 cliques, (iii) G has minimum degree at least 6 and can be covered by at most 7 cliques. Finally, by reconsidering the relation between degree conditions and clique coverings in the case of the strong closure, we prove (as a corollary ofa minimum degree sum result) that every 3-connected claw-free graph G of order at least 142 and minimum degree at least (n+50)/8 ) is Hamilton-connected. We also show that our results are asymptotically sharp.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
DISCRETE MATHEMATICS
ISSN
0012-365X
e-ISSN
—
Svazek periodika
312
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
2177-2189
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—