On the Impact of Annotation Errors on Unit-Selection Speech Synthesis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43916071" target="_blank" >RIV/49777513:23520/12:43916071 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-642-32790-2_55" target="_blank" >http://dx.doi.org/10.1007/978-3-642-32790-2_55</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-32790-2_55" target="_blank" >10.1007/978-3-642-32790-2_55</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Impact of Annotation Errors on Unit-Selection Speech Synthesis
Popis výsledku v původním jazyce
Unit selection is a very popular approach to speech synthesis. It is known for its ability to produce nearly natural-sounding synthetic speech, but, at the same time, also for its need for very large speech corpora. In addition, unit selection is also known to be very sensitive to the quality of the source speech corpus the speech is synthesised from and its textual, phonetic and prosodic annotations and indexation. Given the enormous size of current speech corpora, manual annotation of the corpora is alengthy process. Despite this fact, human annotators do make errors. In this paper, the impact of annotation errors on the quality of unit-selection-based synthetic speech is analysed. Firstly, an analysis and categorisation of annotation errors is presented. Then, a speech synthesis experiment, in which the same utterances were synthesised by unit-selection systems with and without annotation errors, is described. Results of the experiment and the options for fixing the annotation erro
Název v anglickém jazyce
On the Impact of Annotation Errors on Unit-Selection Speech Synthesis
Popis výsledku anglicky
Unit selection is a very popular approach to speech synthesis. It is known for its ability to produce nearly natural-sounding synthetic speech, but, at the same time, also for its need for very large speech corpora. In addition, unit selection is also known to be very sensitive to the quality of the source speech corpus the speech is synthesised from and its textual, phonetic and prosodic annotations and indexation. Given the enormous size of current speech corpora, manual annotation of the corpora is alengthy process. Despite this fact, human annotators do make errors. In this paper, the impact of annotation errors on the quality of unit-selection-based synthetic speech is analysed. Firstly, an analysis and categorisation of annotation errors is presented. Then, a speech synthesis experiment, in which the same utterances were synthesised by unit-selection systems with and without annotation errors, is described. Results of the experiment and the options for fixing the annotation erro
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lecture Notes in Artificial Intelligence
ISSN
0302-9743
e-ISSN
—
Svazek periodika
2012
Číslo periodika v rámci svazku
7499
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
456-463
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—