A symbolic-numerical approach to approximate parameterizations of space curves using graphs of critical points
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43916221" target="_blank" >RIV/49777513:23520/13:43916221 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cam.2012.10.015" target="_blank" >http://dx.doi.org/10.1016/j.cam.2012.10.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2012.10.015" target="_blank" >10.1016/j.cam.2012.10.015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A symbolic-numerical approach to approximate parameterizations of space curves using graphs of critical points
Popis výsledku v původním jazyce
A simple algorithm for computing an approximate parameterization of real space algebraic curves using their graphs of critical points is designed and studied in this paper. The first step is determining a suitable space graph which contains all criticalpoints of a real algebraic space curve C implicitly defined as the complete intersection of two surfaces. The construction of this graph is based on one projection of C in a general position onto an xy-plane and on an intentional choice of vertices. Thesecond part of the designed method is a computation of a spline curve which replaces the edges of the constructed graph by segments of a chosen free-form curve. This step is formulated as an optimization problem when the objective function approximates the integral of the squared Euclidean distance of the constructed approximate curve to the intersection curve. The presented method, based on combining symbolic and numerical steps to the approximation problem, provides approximate paramet
Název v anglickém jazyce
A symbolic-numerical approach to approximate parameterizations of space curves using graphs of critical points
Popis výsledku anglicky
A simple algorithm for computing an approximate parameterization of real space algebraic curves using their graphs of critical points is designed and studied in this paper. The first step is determining a suitable space graph which contains all criticalpoints of a real algebraic space curve C implicitly defined as the complete intersection of two surfaces. The construction of this graph is based on one projection of C in a general position onto an xy-plane and on an intentional choice of vertices. Thesecond part of the designed method is a computation of a spline curve which replaces the edges of the constructed graph by segments of a chosen free-form curve. This step is formulated as an optimization problem when the objective function approximates the integral of the squared Euclidean distance of the constructed approximate curve to the intersection curve. The presented method, based on combining symbolic and numerical steps to the approximation problem, provides approximate paramet
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
—
Svazek periodika
242
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
107-124
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—