Sentiment Analysis in Czech Social Media Using Supervised Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43918525" target="_blank" >RIV/49777513:23520/13:43918525 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sentiment Analysis in Czech Social Media Using Supervised Machine Learning
Popis výsledku v původním jazyce
This article provides an in-depth research of machine learning methods for sentiment analysis of Czech social media. Whereas in English, Chinese, or Spanish this field has a long history and evaluation datasets for various domains are widely available, in case of Czech language there has not yet been any systematical research conducted. We tackle this issue and establish a common ground for further research by providing a large human-annotated Czech social media corpus. Furthermore, we evaluate state-of-the-art supervised machine learning methods for sentiment analysis. We explore different pre-processing techniques and employ various features and classifiers. Moreover, in addition to our newly created social media dataset, we also report results on other widely popular domains, such as movie and product reviews. We believe that this article will not only extend the current sentiment analysis research to another family of languages, but will also encourage competition which potentially
Název v anglickém jazyce
Sentiment Analysis in Czech Social Media Using Supervised Machine Learning
Popis výsledku anglicky
This article provides an in-depth research of machine learning methods for sentiment analysis of Czech social media. Whereas in English, Chinese, or Spanish this field has a long history and evaluation datasets for various domains are widely available, in case of Czech language there has not yet been any systematical research conducted. We tackle this issue and establish a common ground for further research by providing a large human-annotated Czech social media corpus. Furthermore, we evaluate state-of-the-art supervised machine learning methods for sentiment analysis. We explore different pre-processing techniques and employ various features and classifiers. Moreover, in addition to our newly created social media dataset, we also report results on other widely popular domains, such as movie and product reviews. We believe that this article will not only extend the current sentiment analysis research to another family of languages, but will also encourage competition which potentially
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
ISBN
978-1-937284-47-3
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
65-74
Název nakladatele
Association for Computational Linguistics
Místo vydání
Atlanta
Místo konání akce
Atlanta, Georgia, USA
Datum konání akce
10. 6. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—