Functional Dual Adaptive Control with Recursive Gaussian Process Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926639" target="_blank" >RIV/49777513:23520/15:43926639 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1742-6596/659/1/012006" target="_blank" >http://dx.doi.org/10.1088/1742-6596/659/1/012006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/659/1/012006" target="_blank" >10.1088/1742-6596/659/1/012006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Functional Dual Adaptive Control with Recursive Gaussian Process Model
Popis výsledku v původním jazyce
The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded.
Název v anglickém jazyce
Functional Dual Adaptive Control with Recursive Gaussian Process Model
Popis výsledku anglicky
The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-12068S" target="_blank" >GA15-12068S: Adaptivní přístupy k odhadu stavu nelineárních stochastických systémů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Journal of Physics: Conference Series, Volume 659
ISBN
—
ISSN
1742-6588
e-ISSN
1742-6596
Počet stran výsledku
11
Strana od-do
1-11
Název nakladatele
IOP Publishing
Místo vydání
Bristol
Místo konání akce
Plzeň, Česká Republika
Datum konání akce
19. 11. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000368103000006