Wheels are cycle-antimagic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43931163" target="_blank" >RIV/49777513:23520/15:43931163 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1571065315000049" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1571065315000049</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2015.05.003" target="_blank" >10.1016/j.endm.2015.05.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wheels are cycle-antimagic
Popis výsledku v původním jazyce
A simple graph G admits an H-covering if every edge in E(G) belongs to a subgraph of G isomorphic to H. An (a, d)-H-antimagic total labeling of a graph G admitting an H-covering is a bijective function from the vertex set V(G) and the edge set E(G) of the graph G onto the set of integers {1, 2, . . . , |V (G)| + |E(G)|} such that for all subgraphs H' isomorphic to H, the sum of labels of all the edges and vertices belonging to H' constitute the arithmetic progression with the initial term a and the common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper, we investigate the existence of super cycle-antimagic total labelings of wheel.
Název v anglickém jazyce
Wheels are cycle-antimagic
Popis výsledku anglicky
A simple graph G admits an H-covering if every edge in E(G) belongs to a subgraph of G isomorphic to H. An (a, d)-H-antimagic total labeling of a graph G admitting an H-covering is a bijective function from the vertex set V(G) and the edge set E(G) of the graph G onto the set of integers {1, 2, . . . , |V (G)| + |E(G)|} such that for all subgraphs H' isomorphic to H, the sum of labels of all the edges and vertices belonging to H' constitute the arithmetic progression with the initial term a and the common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper, we investigate the existence of super cycle-antimagic total labelings of wheel.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
11-18
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84937412405