Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

UWB at SemEval-2016 Task 7: Novel Method for Automatic Sentiment Intensity Determination

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929283" target="_blank" >RIV/49777513:23520/16:43929283 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    UWB at SemEval-2016 Task 7: Novel Method for Automatic Sentiment Intensity Determination

  • Popis výsledku v původním jazyce

    We present a novel method for determining sentiment intensity. The main goal is to assign a phrase a score from 0 to 1 which indicates the strength of its association with positive sentiment. The proposed model uses a rich set of features with Gaussian processes regression model that computes the final score. The system was evaluated on the data from 7th task of SemEval 2016. Our regression model trained on the development data reached Kendall rank correlation of 0.659 on general English phrases and 0.414 on English Twitter test data.

  • Název v anglickém jazyce

    UWB at SemEval-2016 Task 7: Novel Method for Automatic Sentiment Intensity Determination

  • Popis výsledku anglicky

    We present a novel method for determining sentiment intensity. The main goal is to assign a phrase a score from 0 to 1 which indicates the strength of its association with positive sentiment. The proposed model uses a rich set of features with Gaussian processes regression model that computes the final score. The system was evaluated on the data from 7th task of SemEval 2016. Our regression model trained on the development data reached Kendall rank correlation of 0.659 on general English phrases and 0.414 on English Twitter test data.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Workshop SemEval-2016

  • ISBN

    978-1-941643-95-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    481-485

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg

  • Místo konání akce

    San Diego

  • Datum konání akce

    16. 6. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku