Multivariate analysis of curvature estimators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43930520" target="_blank" >RIV/49777513:23520/17:43930520 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/16864360.2016.1199756" target="_blank" >http://dx.doi.org/10.1080/16864360.2016.1199756</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/16864360.2016.1199756" target="_blank" >10.1080/16864360.2016.1199756</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multivariate analysis of curvature estimators
Popis výsledku v původním jazyce
Principal curvature is one of the defining features of surfaces studied in differential geometry. While well-defined and easy to evaluate for smooth surfaces, it cannot be evaluated exactly if the surface is represented by a polygon mesh, unless some special conditions apply. Nevertheless, estimating the curvature of a surface mesh is a crucial step in common mesh processing algorithms, such as mesh segmentation, mesh smoothing, remeshing and others. While a wealth of approaches for estimating the curvature has been proposed in the literature, aiming at the best possible precision of the estimation, an objective study identifying the strengths and weaknesses of the different methods was usually lacking. We present results of a comprehensive study focused on different aspects of curvature estimation. We extend some of the estimators in order to match properties of others and thus provide comparable results. The results of the study indicate that currently there is no one universally optimal method of curvature estimation. Choosing an appropriate curvature estimation algorithm is highly application specific, and we provide the guidance required for making such choice
Název v anglickém jazyce
Multivariate analysis of curvature estimators
Popis výsledku anglicky
Principal curvature is one of the defining features of surfaces studied in differential geometry. While well-defined and easy to evaluate for smooth surfaces, it cannot be evaluated exactly if the surface is represented by a polygon mesh, unless some special conditions apply. Nevertheless, estimating the curvature of a surface mesh is a crucial step in common mesh processing algorithms, such as mesh segmentation, mesh smoothing, remeshing and others. While a wealth of approaches for estimating the curvature has been proposed in the literature, aiming at the best possible precision of the estimation, an objective study identifying the strengths and weaknesses of the different methods was usually lacking. We present results of a comprehensive study focused on different aspects of curvature estimation. We extend some of the estimators in order to match properties of others and thus provide comparable results. The results of the study indicate that currently there is no one universally optimal method of curvature estimation. Choosing an appropriate curvature estimation algorithm is highly application specific, and we provide the guidance required for making such choice
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer-aided design and applications
ISSN
1686-4360
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
58-69
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84975321393