Estimation of differential quantities using Hermite RBF interpolation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952915" target="_blank" >RIV/49777513:23520/18:43952915 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00371-017-1438-x" target="_blank" >http://dx.doi.org/10.1007/s00371-017-1438-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00371-017-1438-x" target="_blank" >10.1007/s00371-017-1438-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimation of differential quantities using Hermite RBF interpolation
Popis výsledku v původním jazyce
Curvature is an important geometric property in computer graphics that provides information about the character of object surfaces. The exact curvature can only be calculated for a limited set of surface descriptions. Most of the time, we deal with triangles, point sets or some other discrete representation of the surface. For those, curvature can only be estimated. However, surfaces can be fitted by some kind of interpolation function and from it, curvature can be calculated directly. This paper proposes a method for curvature estimation and normal vector re-estimation based on surface fitting using Hermite Radial Basis Function interpolation. Hermite variation uses not only control points, but normal vectors at those points as well. This leads to a better and more robust interpolation than if only control points are used. Once the interpolant is obtained, the curvature and other possible properties can be directly computed using known approaches. The proposed algorithm was tested on several explicit and implicit functions, and it outperforms current state-of-the-art methods if exact normals are available. For normals calculated directly from a triangle mesh, the proposed algorithm works on par with existing state-of-the-art methods.
Název v anglickém jazyce
Estimation of differential quantities using Hermite RBF interpolation
Popis výsledku anglicky
Curvature is an important geometric property in computer graphics that provides information about the character of object surfaces. The exact curvature can only be calculated for a limited set of surface descriptions. Most of the time, we deal with triangles, point sets or some other discrete representation of the surface. For those, curvature can only be estimated. However, surfaces can be fitted by some kind of interpolation function and from it, curvature can be calculated directly. This paper proposes a method for curvature estimation and normal vector re-estimation based on surface fitting using Hermite Radial Basis Function interpolation. Hermite variation uses not only control points, but normal vectors at those points as well. This leads to a better and more robust interpolation than if only control points are used. Once the interpolant is obtained, the curvature and other possible properties can be directly computed using known approaches. The proposed algorithm was tested on several explicit and implicit functions, and it outperforms current state-of-the-art methods if exact normals are available. For normals calculated directly from a triangle mesh, the proposed algorithm works on par with existing state-of-the-art methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Visual Computer
ISSN
0178-2789
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
1645-1659
Kód UT WoS článku
000448487400003
EID výsledku v databázi Scopus
2-s2.0-85029173217