Piecewise rational approximation of square-root parameterizable curves using the Weierstrass form
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932152" target="_blank" >RIV/49777513:23520/17:43932152 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cagd.2017.08.001" target="_blank" >http://dx.doi.org/10.1016/j.cagd.2017.08.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2017.08.001" target="_blank" >10.1016/j.cagd.2017.08.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Piecewise rational approximation of square-root parameterizable curves using the Weierstrass form
Popis výsledku v původním jazyce
In this paper we study situations when non-rational parameterizations of planar or space curves as results of certain geometric operations or constructions are obtained, in general. We focus especially on such cases in which one can identify a rational mapping which is a double cover of a rational curve. Hence, we deal with rational, elliptic or hyperelliptic curves that are birational to plane curves in the Weierstrass form and thus they are square-root parameterizable. We design a simple algorithm for computing an approximate (piecewise) rational parametrization using topological graphs of the Weierstrass curves. Predictable shapes reflecting a number of real roots of a univariate polynomial and a possibility to approximate easily the branches separately play a crucial role in the approximation algorithm. Our goal is not to give a comprehensive list of all such operations but to present at least selected interesting cases originated in geometric modelling and to show a unifying feature of the formulated method. We demonstrate our algorithm on a number of examples.
Název v anglickém jazyce
Piecewise rational approximation of square-root parameterizable curves using the Weierstrass form
Popis výsledku anglicky
In this paper we study situations when non-rational parameterizations of planar or space curves as results of certain geometric operations or constructions are obtained, in general. We focus especially on such cases in which one can identify a rational mapping which is a double cover of a rational curve. Hence, we deal with rational, elliptic or hyperelliptic curves that are birational to plane curves in the Weierstrass form and thus they are square-root parameterizable. We design a simple algorithm for computing an approximate (piecewise) rational parametrization using topological graphs of the Weierstrass curves. Predictable shapes reflecting a number of real roots of a univariate polynomial and a possibility to approximate easily the branches separately play a crucial role in the approximation algorithm. Our goal is not to give a comprehensive list of all such operations but to present at least selected interesting cases originated in geometric modelling and to show a unifying feature of the formulated method. We demonstrate our algorithm on a number of examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER AIDED GEOMETRIC DESIGN
ISSN
0167-8396
e-ISSN
—
Svazek periodika
56
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
52-66
Kód UT WoS článku
000412620700005
EID výsledku v databázi Scopus
2-s2.0-85027554796