Identifying and approximating monotonous segments of algebraic curves using support function representation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285488" target="_blank" >RIV/00216208:11320/14:10285488 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cagd.2014.05.006" target="_blank" >http://dx.doi.org/10.1016/j.cagd.2014.05.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2014.05.006" target="_blank" >10.1016/j.cagd.2014.05.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identifying and approximating monotonous segments of algebraic curves using support function representation
Popis výsledku v původním jazyce
Algorithms describing the topology of real algebraic curves search primarily the singular points and they are usually based on algebraic techniques applied directly to the curve equation. We adopt a different approach, which is primarily based on the identification and approximation of smooth monotonous curve segments, which can in certain cases cross the singularities of the curve. We use not only the primary algebraic equation of the planar curve but also (and more importantly) its implicit support function representation. This representation is also used for an approximation of the segments. This way we obtain an approximate graph of the entire curve which has several nice properties. It approximates the curve within a given Hausdorff distance. Theactual error can be measured efficiently and behaves as O(N-3) where N is the number of segments. The approximate graph is rational and has rational offsets. In the simplest case it consists of arc segments which are efficiently represent
Název v anglickém jazyce
Identifying and approximating monotonous segments of algebraic curves using support function representation
Popis výsledku anglicky
Algorithms describing the topology of real algebraic curves search primarily the singular points and they are usually based on algebraic techniques applied directly to the curve equation. We adopt a different approach, which is primarily based on the identification and approximation of smooth monotonous curve segments, which can in certain cases cross the singularities of the curve. We use not only the primary algebraic equation of the planar curve but also (and more importantly) its implicit support function representation. This representation is also used for an approximation of the segments. This way we obtain an approximate graph of the entire curve which has several nice properties. It approximates the curve within a given Hausdorff distance. Theactual error can be measured efficiently and behaves as O(N-3) where N is the number of segments. The approximate graph is rational and has rational offsets. In the simplest case it consists of arc segments which are efficiently represent
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Aided Geometric Design
ISSN
0167-8396
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
7-8
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
358-372
Kód UT WoS článku
000345056400004
EID výsledku v databázi Scopus
—