Support function at inflection points of planar curves
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10389284" target="_blank" >RIV/00216208:11320/18:10389284 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cagd.2018.05.004" target="_blank" >https://doi.org/10.1016/j.cagd.2018.05.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2018.05.004" target="_blank" >10.1016/j.cagd.2018.05.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Support function at inflection points of planar curves
Popis výsledku v původním jazyce
We study the support function in the neighborhood of inflections of oriented planar curves. Even for a regular curve, the support function is not regular at the inflection and is multivalued on its neighborhood. We describe this function using an implicit algebraic equation and the rational Puiseux series of its branches. Based on these results we are able to approximate the curve at its inflection to any desired degree by curves with a simple support function, which consequently possess rational offsets. We also study the G(1) Hermite interpolation at two points of a planar curve. It is reduced to the functional C-1 interpolation of the support function. For the sake of comparison and better understanding, we show (using standard methods) that its approximation order is 4 for inflection-free curves. In the presence of inflection points this approximation is known to be less efficient. We analyze this phenomenon in detail and prove that by applying a nonuniform subdivision scheme it is possible to receive the best possible approximation order 4, even in the inflection case.
Název v anglickém jazyce
Support function at inflection points of planar curves
Popis výsledku anglicky
We study the support function in the neighborhood of inflections of oriented planar curves. Even for a regular curve, the support function is not regular at the inflection and is multivalued on its neighborhood. We describe this function using an implicit algebraic equation and the rational Puiseux series of its branches. Based on these results we are able to approximate the curve at its inflection to any desired degree by curves with a simple support function, which consequently possess rational offsets. We also study the G(1) Hermite interpolation at two points of a planar curve. It is reduced to the functional C-1 interpolation of the support function. For the sake of comparison and better understanding, we show (using standard methods) that its approximation order is 4 for inflection-free curves. In the presence of inflection points this approximation is known to be less efficient. We analyze this phenomenon in detail and prove that by applying a nonuniform subdivision scheme it is possible to receive the best possible approximation order 4, even in the inflection case.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01171S" target="_blank" >GA17-01171S: Invariantní diferenciální operátory a jejich aplikace v geometrickém modelování a v teorii optimálního řízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Aided Geometric Design
ISSN
0167-8396
e-ISSN
—
Svazek periodika
63
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
109-121
Kód UT WoS článku
000438831800007
EID výsledku v databázi Scopus
2-s2.0-85047000408