Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Interpolations by Rational Motions Using Dual Quaternions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932253" target="_blank" >RIV/49777513:23520/17:43932253 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Interpolations by Rational Motions Using Dual Quaternions

  • Popis výsledku v původním jazyce

    The main aim of this paper is to show an application of dual quater- nions related to a rational spline motion. The interpolation by rational spline motions is an important part of technical practice, e.g., in robotics. Therefore, we will focus on most simple examples of piecewise rational motions with first and second order geometric continuity, in particular, a cubic G2 Hermite interpolation. Consequently, it is shown that the new approach to rational spline motion design based on dual quaternions is an elegant mathematical method.

  • Název v anglickém jazyce

    Interpolations by Rational Motions Using Dual Quaternions

  • Popis výsledku anglicky

    The main aim of this paper is to show an application of dual quater- nions related to a rational spline motion. The interpolation by rational spline motions is an important part of technical practice, e.g., in robotics. Therefore, we will focus on most simple examples of piecewise rational motions with first and second order geometric continuity, in particular, a cubic G2 Hermite interpolation. Consequently, it is shown that the new approach to rational spline motion design based on dual quaternions is an elegant mathematical method.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal for Geometry and Graphics

  • ISSN

    1433-8157

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    8

  • Strana od-do

    71-78

  • Kód UT WoS článku

    000413142200007

  • EID výsledku v databázi Scopus

    2-s2.0-85021791657