Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bounding the distance among longest paths in a connected graph

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43951005" target="_blank" >RIV/49777513:23520/18:43951005 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0012365X17303394" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012365X17303394</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2017.09.029" target="_blank" >10.1016/j.disc.2017.09.029</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bounding the distance among longest paths in a connected graph

  • Popis výsledku v původním jazyce

    It is easy to see that in a connected graph any 2 longest paths have a vertex in common. For k &gt;= 7, Skupień in 1966 obtained a connected graph in which some longest paths have no common vertex, but every k - 1 longest paths have a common vertex. It is not known whether every 3 longest paths in a connected graph have a common vertex and similarly for 4, 5, and 6 longest path. Fujita et al. in 2015 give an upper bound on distance among 3 longest paths in a connected graph. In this paper we give a similar upper bound on distance between 4 longest paths and also for k longest paths, in general.

  • Název v anglickém jazyce

    Bounding the distance among longest paths in a connected graph

  • Popis výsledku anglicky

    It is easy to see that in a connected graph any 2 longest paths have a vertex in common. For k &gt;= 7, Skupień in 1966 obtained a connected graph in which some longest paths have no common vertex, but every k - 1 longest paths have a common vertex. It is not known whether every 3 longest paths in a connected graph have a common vertex and similarly for 4, 5, and 6 longest path. Fujita et al. in 2015 give an upper bound on distance among 3 longest paths in a connected graph. In this paper we give a similar upper bound on distance between 4 longest paths and also for k longest paths, in general.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    DISCRETE MATHEMATICS

  • ISSN

    0012-365X

  • e-ISSN

  • Svazek periodika

    341

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    5

  • Strana od-do

    1155-1159

  • Kód UT WoS článku

    000427664600035

  • EID výsledku v databázi Scopus

    2-s2.0-85033482578