Directional splitting of Gaussian density in non-linear random variable transformation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952501" target="_blank" >RIV/49777513:23520/18:43952501 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1049/iet-spr.2017.0286" target="_blank" >http://dx.doi.org/10.1049/iet-spr.2017.0286</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1049/iet-spr.2017.0286" target="_blank" >10.1049/iet-spr.2017.0286</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Directional splitting of Gaussian density in non-linear random variable transformation
Popis výsledku v původním jazyce
Transformation of a random variable is a common need in a design of many algorithms in signal processing, automatic control, and fault detection. Typically, the design is tied to an assumption on a probability density function of the random variable, often in the form of the Gaussian distribution. The assumption may be, however, difficult to be met in algorithms involving non-linear transformation of the random variable. This paper focuses on techniques capable to ensure validity of the Gaussian assumption of the non-linearly transformed Gaussian variable by approximating the to-be-transformed random variable distribution by a Gaussian mixture (GM) distribution. The stress is laid on an analysis and selection of design parameters of the approximate GM distribution to minimise the error imposed by the non-linear transformation such as the location and number of the GM terms. A special attention is devoted to the definition of the novel GM splitting directions based on the measures of non-Gaussianity. The proposed splitting directions are analysed and illustrated in numerical simulations.
Název v anglickém jazyce
Directional splitting of Gaussian density in non-linear random variable transformation
Popis výsledku anglicky
Transformation of a random variable is a common need in a design of many algorithms in signal processing, automatic control, and fault detection. Typically, the design is tied to an assumption on a probability density function of the random variable, often in the form of the Gaussian distribution. The assumption may be, however, difficult to be met in algorithms involving non-linear transformation of the random variable. This paper focuses on techniques capable to ensure validity of the Gaussian assumption of the non-linearly transformed Gaussian variable by approximating the to-be-transformed random variable distribution by a Gaussian mixture (GM) distribution. The stress is laid on an analysis and selection of design parameters of the approximate GM distribution to minimise the error imposed by the non-linear transformation such as the location and number of the GM terms. A special attention is devoted to the definition of the novel GM splitting directions based on the measures of non-Gaussianity. The proposed splitting directions are analysed and illustrated in numerical simulations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IET Signal Processing
ISSN
1751-9675
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
1073-1081
Kód UT WoS článku
000451807600001
EID výsledku v databázi Scopus
2-s2.0-85057714400