Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cross-lingual word analogies using linear transformations between semantic spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955837" target="_blank" >RIV/49777513:23520/19:43955837 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0957417419304191" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417419304191</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2019.06.021" target="_blank" >10.1016/j.eswa.2019.06.021</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cross-lingual word analogies using linear transformations between semantic spaces

  • Popis výsledku v původním jazyce

    The ability to represent the meaning of words is one of the core parts of natural language understanding (NLU), with applications ranging across machine translation, summarization, question answering, information retrieval, etc. The need for reasoning in multilingual contexts and transferring knowledge in cross- lingual systems has given rise to cross-lingual semantic spaces, which learn representations of words across different languages. With growing attention to cross-lingual representations, it has became crucial to investigate proper evaluation schemes. The word-analogy-based evaluation has been one of the most common tools to evaluate linguistic relationships (such as male-female relationships or verb tenses) encoded in monolingual meaning representations. In this paper, we go beyond monolingual representations and generalize the word analogy task across languages to provide a new intrinsic evaluation tool for cross-lingual semantic spaces. Our approach allows examining cross-lingual projections and their impact on different aspects of meaning. It helps to discover potential weaknesses or advantages of cross-lingual methods before they are incorporated into different intelligent systems. We experiment with six languages within different language families, including English, German, Spanish, Italian, Czech, and Croatian. State-of-the-art monolingual semantic spaces are transformed into a shared space using dictionaries of word translations. We compare several linear transformations and rank them for experiments with monolingual (no transformation), bilingual (one semantic space is transformed to another), and multilingual (all semantic spaces are transformed onto English space) versions of semantic spaces. We show that tested linear transformations preserve relationships between words (word analogies) and lead to impressive results. We achieve average accuracy of 51.1%, 43.1%, and 38.2% for monolingual, bilingual, and multilingual semantic spaces, respectively.

  • Název v anglickém jazyce

    Cross-lingual word analogies using linear transformations between semantic spaces

  • Popis výsledku anglicky

    The ability to represent the meaning of words is one of the core parts of natural language understanding (NLU), with applications ranging across machine translation, summarization, question answering, information retrieval, etc. The need for reasoning in multilingual contexts and transferring knowledge in cross- lingual systems has given rise to cross-lingual semantic spaces, which learn representations of words across different languages. With growing attention to cross-lingual representations, it has became crucial to investigate proper evaluation schemes. The word-analogy-based evaluation has been one of the most common tools to evaluate linguistic relationships (such as male-female relationships or verb tenses) encoded in monolingual meaning representations. In this paper, we go beyond monolingual representations and generalize the word analogy task across languages to provide a new intrinsic evaluation tool for cross-lingual semantic spaces. Our approach allows examining cross-lingual projections and their impact on different aspects of meaning. It helps to discover potential weaknesses or advantages of cross-lingual methods before they are incorporated into different intelligent systems. We experiment with six languages within different language families, including English, German, Spanish, Italian, Czech, and Croatian. State-of-the-art monolingual semantic spaces are transformed into a shared space using dictionaries of word translations. We compare several linear transformations and rank them for experiments with monolingual (no transformation), bilingual (one semantic space is transformed to another), and multilingual (all semantic spaces are transformed onto English space) versions of semantic spaces. We show that tested linear transformations preserve relationships between words (word analogies) and lead to impressive results. We achieve average accuracy of 51.1%, 43.1%, and 38.2% for monolingual, bilingual, and multilingual semantic spaces, respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: VaV inteligentních komponent pokročilých technologií pro plzeňskou metropolitní oblast</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert Systems with Applications

  • ISSN

    0957-4174

  • e-ISSN

  • Svazek periodika

    135

  • Číslo periodika v rámci svazku

    NOV 30 2019

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

    287-295

  • Kód UT WoS článku

    000480665800022

  • EID výsledku v databázi Scopus

    2-s2.0-85067242443