Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep Generalized Max Pooling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43958239" target="_blank" >RIV/49777513:23520/19:43958239 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/ICDAR.2019.00177" target="_blank" >http://dx.doi.org/10.1109/ICDAR.2019.00177</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICDAR.2019.00177" target="_blank" >10.1109/ICDAR.2019.00177</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep Generalized Max Pooling

  • Popis výsledku v původním jazyce

    Global pooling layers are an essential part of Convolutional Neural Networks (CNN). Global average pooling or global max pooling are commonly used for converting convolutional features of variable size images to a fix-sized embedding. However, both pooling layer types are computed spatially independent. In contrast, we propose Deep Generalized Max Pooling that balances the contribution of all activations of a spatially coherent region by re-weighting all descriptors so that the impact of frequent and rare ones is equalized. We show that this layer is superior to both average and max pooling on the classification of Latin medieval manuscripts (CLAMM’16, CLAMM’17), as well as writer identification (Historical-WI’17).

  • Název v anglickém jazyce

    Deep Generalized Max Pooling

  • Popis výsledku anglicky

    Global pooling layers are an essential part of Convolutional Neural Networks (CNN). Global average pooling or global max pooling are commonly used for converting convolutional features of variable size images to a fix-sized embedding. However, both pooling layer types are computed spatially independent. In contrast, we propose Deep Generalized Max Pooling that balances the contribution of all activations of a spatially coherent region by re-weighting all descriptors so that the impact of frequent and rare ones is equalized. We show that this layer is superior to both average and max pooling on the classification of Latin medieval manuscripts (CLAMM’16, CLAMM’17), as well as writer identification (Historical-WI’17).

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    The 15th IAPR International Conference on Document Analysis and Recognition

  • ISBN

    978-1-72813-014-9

  • ISSN

    1520-5363

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    1090-1096

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Austrálie, Sydney

  • Datum konání akce

    20. 9. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku