A note on singular edges and hamiltonicity in claw-free graphs with locally disconnected vertices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958582" target="_blank" >RIV/49777513:23520/20:43958582 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00373-020-02144-1" target="_blank" >https://link.springer.com/article/10.1007/s00373-020-02144-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00373-020-02144-1" target="_blank" >10.1007/s00373-020-02144-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A note on singular edges and hamiltonicity in claw-free graphs with locally disconnected vertices
Popis výsledku v původním jazyce
An edge e of a graph G is called singular if it is not on a triangle and nonsingular otherwise. A vertex is singular if it is adjacent to a singular edge, and nonsingular otherwise. We prove the following. Let G be a connected claw-free graph such that every locally disconnected vertex x of G satisfies the following conditions: (i) if x is nonsingular of degree 4, then x is on an induced cycle of length at least 4 with at most 4 nonsingular edges, (ii) if x is not nonsingular of degree 4, then x is on an induced cycle of length at least 4 with at most 3 nonsingular edges, (iii) if x is of degree 2, then x is singular and x is on an induced cycle C of length at least 4 with at most 2 nonsingular edges such that vertices of degree 2 of C induce in G a path or a cycle. Then G is either hamiltonian, or G belongs to a well-described class of exceptions. Some results on forbidden subgraph conditions for hamiltonicity in 3-connected claw-free graphs are also obtained as immediate corollaries.
Název v anglickém jazyce
A note on singular edges and hamiltonicity in claw-free graphs with locally disconnected vertices
Popis výsledku anglicky
An edge e of a graph G is called singular if it is not on a triangle and nonsingular otherwise. A vertex is singular if it is adjacent to a singular edge, and nonsingular otherwise. We prove the following. Let G be a connected claw-free graph such that every locally disconnected vertex x of G satisfies the following conditions: (i) if x is nonsingular of degree 4, then x is on an induced cycle of length at least 4 with at most 4 nonsingular edges, (ii) if x is not nonsingular of degree 4, then x is on an induced cycle of length at least 4 with at most 3 nonsingular edges, (iii) if x is of degree 2, then x is singular and x is on an induced cycle C of length at least 4 with at most 2 nonsingular edges such that vertices of degree 2 of C induce in G a path or a cycle. Then G is either hamiltonian, or G belongs to a well-described class of exceptions. Some results on forbidden subgraph conditions for hamiltonicity in 3-connected claw-free graphs are also obtained as immediate corollaries.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
GRAPHS AND COMBINATORICS
ISSN
0911-0119
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
JP - Japonsko
Počet stran výsledku
13
Strana od-do
665-677
Kód UT WoS článku
000518137000001
EID výsledku v databázi Scopus
2-s2.0-85080069039