Homogenization of the fluid–structure interaction in acoustics of porous media perfused by viscous fluid
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959165" target="_blank" >RIV/49777513:23520/20:43959165 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00033-020-01361-1" target="_blank" >https://link.springer.com/article/10.1007%2Fs00033-020-01361-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00033-020-01361-1" target="_blank" >10.1007/s00033-020-01361-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homogenization of the fluid–structure interaction in acoustics of porous media perfused by viscous fluid
Popis výsledku v původním jazyce
This paper aims to clarify the homogenization results of the fluid–structure interaction in porous structures under the quasi-static and dynamic loading regimes. In the latter case, the acoustic fluctuations yield naturally a linear model which can be introduced in the configuration deformed as the consequence of the steady permanent flow. We consider a Newtonian slightly compressible fluid under the barotropic acoustic approximation. In contrast with usual simplifications, the advection phenomenon of the Navier–Stokes equations is accounted for. The homogenization results are based on the periodic unfolding method combined with the asymptotic expansion technique which provide a straight procedure leading the local problems for corrector functions yielding the effective model parameters and the macroscopic model. We show that the local problems for the solid and fluid parts are decoupled even in the dynamic interactions including the wall shear stress on the periodic interfaces. The dynamic permeability depends on the fluid flow properties including the advection effects associated with an assumed stationary perfusion of the porous structure.
Název v anglickém jazyce
Homogenization of the fluid–structure interaction in acoustics of porous media perfused by viscous fluid
Popis výsledku anglicky
This paper aims to clarify the homogenization results of the fluid–structure interaction in porous structures under the quasi-static and dynamic loading regimes. In the latter case, the acoustic fluctuations yield naturally a linear model which can be introduced in the configuration deformed as the consequence of the steady permanent flow. We consider a Newtonian slightly compressible fluid under the barotropic acoustic approximation. In contrast with usual simplifications, the advection phenomenon of the Navier–Stokes equations is accounted for. The homogenization results are based on the periodic unfolding method combined with the asymptotic expansion technique which provide a straight procedure leading the local problems for corrector functions yielding the effective model parameters and the macroscopic model. We show that the local problems for the solid and fluid parts are decoupled even in the dynamic interactions including the wall shear stress on the periodic interfaces. The dynamic permeability depends on the fluid flow properties including the advection effects associated with an assumed stationary perfusion of the porous structure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK
ISSN
0044-2275
e-ISSN
—
Svazek periodika
71
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
28
Strana od-do
1-28
Kód UT WoS článku
000552198900001
EID výsledku v databázi Scopus
2-s2.0-85088557658