Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Resampling-free Stochastic Integration Filter

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959775" target="_blank" >RIV/49777513:23520/20:43959775 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.23919/FUSION45008.2020.9190535" target="_blank" >https://doi.org/10.23919/FUSION45008.2020.9190535</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/FUSION45008.2020.9190535" target="_blank" >10.23919/FUSION45008.2020.9190535</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Resampling-free Stochastic Integration Filter

  • Popis výsledku v původním jazyce

    The paper deals with the state estimation of nonlinear stochastic systems with additive Gaussian noises by means of the Gaussian filters leveraging numerical integration rules. The filters were derived under the assumption of the joint state and measurement predictive density being Gaussian, which is violated by the system nonlinearity. Such violation can hardly be monitored by the standard Gaussian filters, which re-generate a new set of points for each involved numerical integration to accommodate their variance increase due to the additive noises. The paper proposes a stochastic integration filter algorithm that modifies the points instead of their resampling and thus admits reusing the points in the next time steps. The distribution of the points can thus bear more information than just the first two moments in case of the standard Gaussian filters. The acquired information is then utilized for the Gaussian assumption monitoring purposes. In the event of the assumption violation, the filter may change its behavior. As a by-product of reusing the points, the computational costs of the proposed filter are significantly reduced compared to the standard stochastic integration filter.

  • Název v anglickém jazyce

    Resampling-free Stochastic Integration Filter

  • Popis výsledku anglicky

    The paper deals with the state estimation of nonlinear stochastic systems with additive Gaussian noises by means of the Gaussian filters leveraging numerical integration rules. The filters were derived under the assumption of the joint state and measurement predictive density being Gaussian, which is violated by the system nonlinearity. Such violation can hardly be monitored by the standard Gaussian filters, which re-generate a new set of points for each involved numerical integration to accommodate their variance increase due to the additive noises. The paper proposes a stochastic integration filter algorithm that modifies the points instead of their resampling and thus admits reusing the points in the next time steps. The distribution of the points can thus bear more information than just the first two moments in case of the standard Gaussian filters. The acquired information is then utilized for the Gaussian assumption monitoring purposes. In the event of the assumption violation, the filter may change its behavior. As a by-product of reusing the points, the computational costs of the proposed filter are significantly reduced compared to the standard stochastic integration filter.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2020 IEEE 23rd International Conference on Information Fusion (FUSION)

  • ISBN

    978-0-578-64709-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Název nakladatele

    IEEE

  • Místo vydání

    Rustenburg

  • Místo konání akce

    Rustenburg, Jihoafrická republika

  • Datum konání akce

    6. 7. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku