Resampling-free Stochastic Integration Filter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959775" target="_blank" >RIV/49777513:23520/20:43959775 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.23919/FUSION45008.2020.9190535" target="_blank" >https://doi.org/10.23919/FUSION45008.2020.9190535</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/FUSION45008.2020.9190535" target="_blank" >10.23919/FUSION45008.2020.9190535</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Resampling-free Stochastic Integration Filter
Popis výsledku v původním jazyce
The paper deals with the state estimation of nonlinear stochastic systems with additive Gaussian noises by means of the Gaussian filters leveraging numerical integration rules. The filters were derived under the assumption of the joint state and measurement predictive density being Gaussian, which is violated by the system nonlinearity. Such violation can hardly be monitored by the standard Gaussian filters, which re-generate a new set of points for each involved numerical integration to accommodate their variance increase due to the additive noises. The paper proposes a stochastic integration filter algorithm that modifies the points instead of their resampling and thus admits reusing the points in the next time steps. The distribution of the points can thus bear more information than just the first two moments in case of the standard Gaussian filters. The acquired information is then utilized for the Gaussian assumption monitoring purposes. In the event of the assumption violation, the filter may change its behavior. As a by-product of reusing the points, the computational costs of the proposed filter are significantly reduced compared to the standard stochastic integration filter.
Název v anglickém jazyce
Resampling-free Stochastic Integration Filter
Popis výsledku anglicky
The paper deals with the state estimation of nonlinear stochastic systems with additive Gaussian noises by means of the Gaussian filters leveraging numerical integration rules. The filters were derived under the assumption of the joint state and measurement predictive density being Gaussian, which is violated by the system nonlinearity. Such violation can hardly be monitored by the standard Gaussian filters, which re-generate a new set of points for each involved numerical integration to accommodate their variance increase due to the additive noises. The paper proposes a stochastic integration filter algorithm that modifies the points instead of their resampling and thus admits reusing the points in the next time steps. The distribution of the points can thus bear more information than just the first two moments in case of the standard Gaussian filters. The acquired information is then utilized for the Gaussian assumption monitoring purposes. In the event of the assumption violation, the filter may change its behavior. As a by-product of reusing the points, the computational costs of the proposed filter are significantly reduced compared to the standard stochastic integration filter.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2020 IEEE 23rd International Conference on Information Fusion (FUSION)
ISBN
978-0-578-64709-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
IEEE
Místo vydání
Rustenburg
Místo konání akce
Rustenburg, Jihoafrická republika
Datum konání akce
6. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—