Structure and properties of bixbyite-based Ta–O–N films prepared by HiPIMS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43960432" target="_blank" >RIV/49777513:23520/20:43960432 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structure and properties of bixbyite-based Ta–O–N films prepared by HiPIMS
Popis výsledku v původním jazyce
The Ta–O–N materials are an interesting group of materials that may provide appropriate properties (i.e., band gap width and alignment) for splitting of water into H2 and O2 under visible light irradiation (without any external voltage). However, it is still a big challenge to prepare highly crystalline Ta–O–N materials in a form of a thin film mainly due to their very high crystallization temperature (800–900 °C). In our research we utilize the advantages of high-power impulse magnetron sputtering in combination with film post-annealing in a vacuum furnace to prepare single-phase Ta–O–N thin films. Recently, during our work dealing with monoclinic TaON films, fine-tuning of the elemental composition of the films led to a successful preparation of bixbyite-based Ta2N2O films. To the best of our knowledge, this material has not been yet reported. In this work, we present the way of preparation of the films and we investigate their properties with respect to the water splitting application. The optical band gap width of this material is 2.0 eV, allowing absorption of visible light up to 620 nm and the band gap is also well aligned with respect to the water splitting redox potentials (based on the ultraviolet photoelectron spectroscopy data). The electronic structure of this material is further discussed based on data measured by Hard X-ray Photoelectron Spectroscopy (HAXPES) and Hall probe. The explanation of the results is also supported by carried out ab-initio calculations.
Název v anglickém jazyce
Structure and properties of bixbyite-based Ta–O–N films prepared by HiPIMS
Popis výsledku anglicky
The Ta–O–N materials are an interesting group of materials that may provide appropriate properties (i.e., band gap width and alignment) for splitting of water into H2 and O2 under visible light irradiation (without any external voltage). However, it is still a big challenge to prepare highly crystalline Ta–O–N materials in a form of a thin film mainly due to their very high crystallization temperature (800–900 °C). In our research we utilize the advantages of high-power impulse magnetron sputtering in combination with film post-annealing in a vacuum furnace to prepare single-phase Ta–O–N thin films. Recently, during our work dealing with monoclinic TaON films, fine-tuning of the elemental composition of the films led to a successful preparation of bixbyite-based Ta2N2O films. To the best of our knowledge, this material has not been yet reported. In this work, we present the way of preparation of the films and we investigate their properties with respect to the water splitting application. The optical band gap width of this material is 2.0 eV, allowing absorption of visible light up to 620 nm and the band gap is also well aligned with respect to the water splitting redox potentials (based on the ultraviolet photoelectron spectroscopy data). The electronic structure of this material is further discussed based on data measured by Hard X-ray Photoelectron Spectroscopy (HAXPES) and Hall probe. The explanation of the results is also supported by carried out ab-initio calculations.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů