Classification of Hand Movement in EEG using ERD/ERS and Multilayer Perceptron
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43960748" target="_blank" >RIV/49777513:23520/20:43960748 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scitepress.org/Link.aspx?doi=10.5220/0009167007130717" target="_blank" >https://www.scitepress.org/Link.aspx?doi=10.5220/0009167007130717</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0009167007130717" target="_blank" >10.5220/0009167007130717</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of Hand Movement in EEG using ERD/ERS and Multilayer Perceptron
Popis výsledku v původním jazyce
Continuous EEG activity in the measured subjects includes different patterns depending on what activity the subject performed. ERD and ERS are examples of such patterns related to movement, for example of a hand, finger or foot. This article deals with the detection of motion based on the ERD/ERS patterns. By linking ERD/ERS, feature vectors which are later classified by neural network are created. The resulting neural network consists of one input and one output layer and two hidden layers. The first hidden layer contains 3,000 neurons and the second one 1,500 neurons. A training set of feature vectors is used for the training of this neural network and the back-propagation algorithm is used for the subsequent adjustment of the weights. With this setting and training, the neural network is able to classify motion in an EEG record with an average accuracy of 79.92%.
Název v anglickém jazyce
Classification of Hand Movement in EEG using ERD/ERS and Multilayer Perceptron
Popis výsledku anglicky
Continuous EEG activity in the measured subjects includes different patterns depending on what activity the subject performed. ERD and ERS are examples of such patterns related to movement, for example of a hand, finger or foot. This article deals with the detection of motion based on the ERD/ERS patterns. By linking ERD/ERS, feature vectors which are later classified by neural network are created. The resulting neural network consists of one input and one output layer and two hidden layers. The first hidden layer contains 3,000 neurons and the second one 1,500 neurons. A training set of feature vectors is used for the training of this neural network and the back-propagation algorithm is used for the subsequent adjustment of the weights. With this setting and training, the neural network is able to classify motion in an EEG record with an average accuracy of 79.92%.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
BIOSTEC 2020
ISBN
978-989-758-398-8
ISSN
2184-4305
e-ISSN
—
Počet stran výsledku
5
Strana od-do
713-717
Název nakladatele
SciTiPress
Místo vydání
Setúbal
Místo konání akce
Valletta Malta
Datum konání akce
24. 2. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000571479400081