Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Decomposition formula for rough Volterra stochastic volatility models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43956997" target="_blank" >RIV/49777513:23520/21:43956997 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1142/S0219024921500084" target="_blank" >https://doi.org/10.1142/S0219024921500084</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0219024921500084" target="_blank" >10.1142/S0219024921500084</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Decomposition formula for rough Volterra stochastic volatility models

  • Popis výsledku v původním jazyce

    The research presented in this article provides an alternative option pricing approach for a class of rough fractional stochastic volatility models. These models are increasingly popular between academics and practitioners due to their surprising consistency with financial markets. However, they bring several challenges alongside. Most noticeably, even simple non-linear financial derivatives as vanilla European options are typically priced by means of Monte-Carlo (MC) simulations which are more computationally demanding than similar MC schemes for standard stochastic volatility models. In this paper, we provide a proof of the prediction law for general Gaussian Volterra processes. The prediction law is then utilized to obtain an adapted projection of the future squared volatility -- a cornerstone of the proposed pricing approximation. Firstly, a decomposition formula for European option prices under general Volterra volatility models is introduced. Then we focus on particular models with rough fractional volatility and we derive an explicit semi-closed approximation formula. Numerical properties of the approximation for a popular model -- the rBergomi model -- are studied and we propose a hybrid calibration scheme which combines the approximation formula alongside MC simulations. This scheme can significantly speed up the calibration to financial markets as illustrated on a set of AAPL options.

  • Název v anglickém jazyce

    Decomposition formula for rough Volterra stochastic volatility models

  • Popis výsledku anglicky

    The research presented in this article provides an alternative option pricing approach for a class of rough fractional stochastic volatility models. These models are increasingly popular between academics and practitioners due to their surprising consistency with financial markets. However, they bring several challenges alongside. Most noticeably, even simple non-linear financial derivatives as vanilla European options are typically priced by means of Monte-Carlo (MC) simulations which are more computationally demanding than similar MC schemes for standard stochastic volatility models. In this paper, we provide a proof of the prediction law for general Gaussian Volterra processes. The prediction law is then utilized to obtain an adapted projection of the future squared volatility -- a cornerstone of the proposed pricing approximation. Firstly, a decomposition formula for European option prices under general Volterra volatility models is introduced. Then we focus on particular models with rough fractional volatility and we derive an explicit semi-closed approximation formula. Numerical properties of the approximation for a popular model -- the rBergomi model -- are studied and we propose a hybrid calibration scheme which combines the approximation formula alongside MC simulations. This scheme can significantly speed up the calibration to financial markets as illustrated on a set of AAPL options.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-16680S" target="_blank" >GA18-16680S: Rough modely frakcionální stochastické volatility</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Theoretical and Applied Finance

  • ISSN

    0219-0249

  • e-ISSN

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    47

  • Strana od-do

    2150008

  • Kód UT WoS článku

    000649334300006

  • EID výsledku v databázi Scopus

    2-s2.0-85104503511