Decomposition formula for rough Volterra stochastic volatility models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43956997" target="_blank" >RIV/49777513:23520/21:43956997 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1142/S0219024921500084" target="_blank" >https://doi.org/10.1142/S0219024921500084</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219024921500084" target="_blank" >10.1142/S0219024921500084</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decomposition formula for rough Volterra stochastic volatility models
Popis výsledku v původním jazyce
The research presented in this article provides an alternative option pricing approach for a class of rough fractional stochastic volatility models. These models are increasingly popular between academics and practitioners due to their surprising consistency with financial markets. However, they bring several challenges alongside. Most noticeably, even simple non-linear financial derivatives as vanilla European options are typically priced by means of Monte-Carlo (MC) simulations which are more computationally demanding than similar MC schemes for standard stochastic volatility models. In this paper, we provide a proof of the prediction law for general Gaussian Volterra processes. The prediction law is then utilized to obtain an adapted projection of the future squared volatility -- a cornerstone of the proposed pricing approximation. Firstly, a decomposition formula for European option prices under general Volterra volatility models is introduced. Then we focus on particular models with rough fractional volatility and we derive an explicit semi-closed approximation formula. Numerical properties of the approximation for a popular model -- the rBergomi model -- are studied and we propose a hybrid calibration scheme which combines the approximation formula alongside MC simulations. This scheme can significantly speed up the calibration to financial markets as illustrated on a set of AAPL options.
Název v anglickém jazyce
Decomposition formula for rough Volterra stochastic volatility models
Popis výsledku anglicky
The research presented in this article provides an alternative option pricing approach for a class of rough fractional stochastic volatility models. These models are increasingly popular between academics and practitioners due to their surprising consistency with financial markets. However, they bring several challenges alongside. Most noticeably, even simple non-linear financial derivatives as vanilla European options are typically priced by means of Monte-Carlo (MC) simulations which are more computationally demanding than similar MC schemes for standard stochastic volatility models. In this paper, we provide a proof of the prediction law for general Gaussian Volterra processes. The prediction law is then utilized to obtain an adapted projection of the future squared volatility -- a cornerstone of the proposed pricing approximation. Firstly, a decomposition formula for European option prices under general Volterra volatility models is introduced. Then we focus on particular models with rough fractional volatility and we derive an explicit semi-closed approximation formula. Numerical properties of the approximation for a popular model -- the rBergomi model -- are studied and we propose a hybrid calibration scheme which combines the approximation formula alongside MC simulations. This scheme can significantly speed up the calibration to financial markets as illustrated on a set of AAPL options.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-16680S" target="_blank" >GA18-16680S: Rough modely frakcionální stochastické volatility</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Theoretical and Applied Finance
ISSN
0219-0249
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
47
Strana od-do
2150008
Kód UT WoS článku
000649334300006
EID výsledku v databázi Scopus
2-s2.0-85104503511