ChronSeg: Novel dataset for segmentation of handwritten historical chronicles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962097" target="_blank" >RIV/49777513:23520/21:43962097 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/349201748_ChronSeg_Novel_Dataset_for_Segmentation_of_Handwritten_Historical_Chronicles" target="_blank" >https://www.researchgate.net/publication/349201748_ChronSeg_Novel_Dataset_for_Segmentation_of_Handwritten_Historical_Chronicles</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010317203140322" target="_blank" >10.5220/0010317203140322</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ChronSeg: Novel dataset for segmentation of handwritten historical chronicles
Popis výsledku v původním jazyce
The segmentation of document images plays an important role in the process of making their content electronically accessible. This work focuses on the segmentation of historical handwritten documents, namely chronicles. We take image, text and background classes into account. For this goal, a new dataset is created mainly from chronicles provided by Porta fontium. In total, the dataset consists of 58 images of document pages and their precise annotations for text, image and graphic regions in PAGE format. The annotations are also provided at a pixel level. Further, we present a baseline evaluation using an approach based on a fully convolutional neural network. We also perform a series of experiments in order to identify the best method configuration. It includes a novel data augmentation method which creates artificial pages.
Název v anglickém jazyce
ChronSeg: Novel dataset for segmentation of handwritten historical chronicles
Popis výsledku anglicky
The segmentation of document images plays an important role in the process of making their content electronically accessible. This work focuses on the segmentation of historical handwritten documents, namely chronicles. We take image, text and background classes into account. For this goal, a new dataset is created mainly from chronicles provided by Porta fontium. In total, the dataset consists of 58 images of document pages and their precise annotations for text, image and graphic regions in PAGE format. The annotations are also provided at a pixel level. Further, we present a baseline evaluation using an approach based on a fully convolutional neural network. We also perform a series of experiments in order to identify the best method configuration. It includes a novel data augmentation method which creates artificial pages.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICAART 2021 - Proceedings of the 13th International Conference on Agents and Artificial Intelligence
ISBN
978-989-758-484-8
ISSN
2184-433X
e-ISSN
—
Počet stran výsledku
9
Strana od-do
314-322
Název nakladatele
ScitePress
Místo vydání
Setúbal
Místo konání akce
Online Streaming
Datum konání akce
4. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000661455800031